Пионер количественной теории цветов. Научные труды Джеймс Максвелл

13 июня 1831 года в Эдинбурге, в семье аристократа из старинного рода Клерков родился мальчик, названный Джеймсом. Отец его, Джон Клерк Максвелл, член адвокатской коллегии, имел университетское образование, но профессию свою не любил и увлекался в свободные часы техникой и наукой. Мать Джеймса, Фрэнсис Кей, была дочерью судьи. После рождения мальчика семья переехала в Миддлби, фамильное имение Максвеллов на юге Шотландии. Вскоре Джон построил там новый дом, получивший имя Гленлэр.

Детство будущего великого физика омрачилось лишь слишком ранней кончиной матери. Джеймс рос любознательным мальчиком и благодаря отцовским увлечениям был с детства окружен «техническими» игрушками, такими, как модель небесной сферы и «магический диск», предшественник кинематографа. Тем не менее, интересовался он и поэзией и даже сам писал стихи, кстати, не оставив это занятие до конца своих дней. Начальное образование дал Джеймсу отец - первого домашнего учителя наняли, только когда Джеймсу исполнилось десять лет. Правда, отец быстро понял, что подобное обучение вовсе неэффективно, и отправил сына в Эдинбург, к своей сестре Изабелле. Здесь Джеймс поступил в Эдинбургскую Академию, в которой детям давали чисто классическое образование - латынь, греческий, античная литература, Священное Писание и немножко математики. Учиться мальчику понравилось не сразу, но постепенно он стал лучшим в классе учеником и заинтересовался в первую очередь геометрией. В это время он изобрел собственный способ рисования овалов.

В шестнадцать лет Джеймс Максвелл закончил академию и поступил в университет Эдинбурга. Здесь он окончательно увлекся точными науками, и уже в 1850 году Эдинбургское королевское общество признало серьезными его труды по теории упругости. В этом же году отец Джеймса согласился, что сыну необходимо более престижное образование, и Джеймс уехал в Кембридж, где сначала учился в колледже Питерхаус, а на втором семестре перевелся в Тринити-колледж. Два года спустя Максвелл получил за свои успехи университетскую стипендию. Впрочем, в Кембридже он занимался наукой очень мало - больше читал, заводил новые знакомства и активно вращался в среде университетских интеллектуалов. В это время сформировались и его религиозные взгляды - безусловная вера в Бога и скептичность по отношению к теологии, которую Джеймс Максвелл ставил на последнее место среди прочих наук. В студенческие годы он стал также приверженцем так называемого «христианского социализма» и принял участие в работе «Рабочего колледжа», читая там популярные лекции.

В двадцать три года Джеймс сдал итоговый экзамен по математике, заняв в студенческом списке второе место. Получив степень бакалавра, он принял решение остаться в университете и готовиться к званию профессора. Он преподавал, продолжал сотрудничать с Рабочим колледжем и начал книгу об оптике, которую, правда, так и не закончил. Тогда же Максвелл создал экспериментальное шуточное исследование, вошедшее в фольклор Кембриджа. Целью этого исследования было «котоверчение» - Максвелл определял минимальную высоту, с которой кошка, падая, встает на лапки. Но основным интересом Джеймса была тогда теория цвета, взявшая начало от идеи Ньютона о существовании семи основных цветов. К тому же времени относится и его серьезное увлечение электричеством. Сразу после получения степени бакалавра Максвелл начал исследовать электричество и магнетизм. В вопросе о природе магнитных и электрических эффектов он принял позицию Майкла Фарадея, согласно которой силовые линии соединяют отрицательный и положительный заряды и заполняют окружающее пространство. Но были получены верные результаты и уже оформившейся и строгой наукой электродинамикой, а потому Максвелл задался вопросом построения теории, включавшей и представления Фарадея, и результаты электродинамики. Максвеллом была разработана гидродинамическая модель силовых линий, и ему же удалось впервые выразить на языке математики закономерности, открытые Фарадеем - в виде дифференциальных уравнений.

Осенью 1855 года Джеймс Максвелл, успешно сдав необходимый экзамен, стал членом университетского совета, что, кстати, подразумевало в то время принятие обета безбрачия. С началом нового семестра он приступил к чтению в колледже лекций по оптике и гидростатике. Однако зимой ему пришлось поехать в родное имение, чтобы перевезти в Эдинбург тяжело заболевшего отца. Вернувшись в Англию, Джеймс узнал, что в Абердинском Маришаль-колледже свободна вакансия преподавателя натуральной философии. Это место давало ему возможность быть ближе к отцу, да и перспектив в Кембридже Максвелл для себя не видел. В середине весны 1856 года он стал профессором в Абердине, но Джон Клерк Максвелл умер еще до назначения сына. Джеймс провел в родовом имении лето и в октябре уехал в Абердин.

Абердин был главным портом Шотландии, но вот многие кафедры его университета пребывали в печальной заброшенности. В первые же дни своей профессорской деятельности Джеймс Максвелл принялся исправлять это положение хотя бы на своей кафедре. Он работал над новыми методиками обучения и пытался заинтересовать студентов научной работой, но не преуспел в этом начинании. Лекции нового профессора, полные юмора и игры слов, касались весьма сложных вещей, и сей факт отпугивал большинство учеников, привыкших к популярности изложения, отсутствию демонстраций и пренебрежению математикой. Из восьми десятков студентов Максвелл сумел научить лишь несколько человек, действительно хотевших учиться.

В Абердине Максвелл устроил и свою личную жизнь - летом 1858 года он женился на младшей дочери директора колледжа Маришаль, Кэтрин Дьюар. Немедленно после венчания Джеймса исключили из совета Тринити-колледжа, как нарушившего обет безбрачия.

Еще в 1855 году Кембридж предложил на соискание престижной премии Адамса работу по исследованию колец Сатурна, и именно Джеймс Максвелл в 1857 стал обладателем премии. Но премией он не удовольствовался и продолжал разрабатывать тему, в итоге издав в 1859 году трактат «On the stability of the motion of Saturn’s rings», мгновенно получивший признание среди ученых. О трактате сказали, что это - самое блестящее из существующих применение математики к физике. Во время профессорства в Абердинском колледже Максвелл занимался также темой преломления света, геометрической оптикой и, главное, кинетической теорией газов. В 1860 году им была построена первая статистическая модель микропроцессов, ставшая основой для развития статистической механики.

Профессорская должность в Абердинском университете вполне устраивала Максвелла - колледж требовал его присутствия лишь с октября до мая, а остальное время ученого было совершенно свободно. В колледже царила атмосфера свободы, профессора не имели жестких обязанностей, а кроме того, каждую неделю Максвелл читал в научной школе Абердина платные лекции для механиков и ремесленников, обучением которых всегда интересовался. Это замечательное положение дел изменилось в 1859 году, когда постановили объединить два колледжа университета, и должность профессора кафедры натуральной философии была упразднена. Максвелл попытался получить ту же должность в Эдинбургском университете, но пост достался по конкурсу его старому другу Питеру Тэту. В июне 1860 года Джеймсу предложили профессорство на кафедре натуральной философии в столичном Кингз-колледже. В том же месяце он сделал доклад о своих исследованиях теории цвета и вскоре был награжден медалью Румфорда за работы в области оптики и смешения цветов. Однако все оставшееся время до начала семестра он провел в Гленлэре, родовом имении - и не в научных занятиях, а тяжело болея оспой.

Быть профессором в Лондоне оказалось куда менее приятно, чем в Абердине. В Кингз-колледже были великолепно оснащенный физические лаборатории и почиталась экспериментальная наука, но и студентов обучалось гораздо больше. Работа оставляла Максвеллу время лишь на домашние эксперименты. Тем не менее, в 1861 году его включили в Комитет по эталонам, перед которым стояла задача определения основных единиц электричества. Два года спустя были опубликованы итоги тщательных измерений, в 1881 году послужившие основанием для принятия вольта, ампера и ома. Продолжал Максвелл и работы по теории упругости, создал теорему Максвелла, рассматривающую напряжение в фермах методами графостатики, занимался анализом условий равновесия у сферических оболочек. За эти и другие работы, имевшие существенное практическое значение, он получил премию Кейта от королевского общества Эдинбурга. В мае 1861 года, читая лекцию о теории цвета, Максвелл представил весьма убедительное доказательство своей правоты. Это была первая в мире цветная фотография.

Но самым великим вкладом Джеймса Максвелла в физику явилось открытие тока. Придя к выводу, что электрический ток имеет поступательную природу, а магнетизм - вихревую, Максвелл создал новую модель - чисто механическую, согласно которой «молекулярные вихри производят», вращаясь, магнитное поле, а «холостые передаточные колеса» обеспечивают их одностороннее вращение. Формирование электрического тока обеспечивалось поступательным движением передаточных колес (по Максвеллу - «частичек электричества»), а магнитное поле, будучи направленным вдоль оси вихревого вращения, оказывалось перпендикулярно направлению тока. Это выразилось в «правиле буравчика», которое обосновал Максвелл. Благодаря своей модели он сумел не только наглядно проиллюстрировать явление электромагнитной индукции и вихревой характер поля, которое порождает ток, но и доказать, что изменения в электрическом поле, названные током смещения, приводят к возникновению поля магнитного. Ну а ток смещения дал представление о существовании незамкнутых токов. В своей статье «On physical lines of force» (1861-1862 гг.) Максвелл изложил данные результаты, а также отметил сходство свойств вихревой среды со свойствами светоносного эфира - и это был серьезный шаг к возникновению электромагнитной теории света.

Статья Максвелла о динамической теории электромагнитного поля вышла в 1864 году, и в ней механическую модель сменили «уравнения Максвелла» - математическая формулировка уравнений поля - а само поле впервые трактовалось в качестве реальной физически системы, имеющей определенную энергию. В этой статье он предсказал и существование не только магнитных, но и электромагнитных волн. Параллельно изучению электромагнетизма Максвелл провел несколько экспериментов, проверяя свои результаты в кинетической теории. Сконструировав прибор, определяющий вязкость воздуха, он убедился, что коэффициент внутреннего трения действительно не зависит от плотности.

В 1865 году Максвелл окончательно устал от своей педагогической деятельности. Неудивительно - лекции его были слишком сложны, чтобы еще и поддерживать на них дисциплину, да и научная работа, в отличие от преподавания, занимала все его мысли. Решение было принято, и ученый переехал в родной Гленлэр. Почти сразу после переезда он получил травму на конной прогулке и заболел рожистым воспалением. Выздоровев, Джеймс активно взялся за хозяйство, перестраивая и расширяя свое имение. Однако и о студентах не забывал - регулярно ездил в Лондон и в Кембридж принимать экзамены. Именно он добился введения в экзамены вопросов и задач прикладного характера. В начале 1867 года врач посоветовал часто болевшей жене Максвелла лечение в Италии, и всю весну Максвеллы провели во Флоренции и Риме. Здесь ученый встречался с профессором Маттеучи, итальянским физиком, и практиковался в иностранных языках. Кстати, Максвелл неплохо владел латинским, итальянским, греческим, немецким и французским. На родину Максвеллы возвращались через Германию, Голландию и Францию.

В том же году Максвелл сочинил стихотворение, посвященное Питеру Тэту. Шуточная ода называлась «Главному музыканту по игре на набла» и оказалась настолько успешной, что закрепила в науке новый термин «набла», произошедший от названия древнеассирийского музыкального инструмента и обозначающий символ векторного дифференциального оператора. Заметим, что своему другу Тэту, представившему вместе с Томсоном второе начало термодинамики как JCM = dp/dt, Максвелл обязан собственным псевдонимом, которым подписывал стихи и письма. Левая часть формулы совпала с инициалами Джеймса, а потому он решил использовать в качестве подписи правую - dp/dt.

В 1868 году Максвеллу предложили пост ректора в университете Сент-Эндрюс, но ученый отказался, не желая менять свой уединенный образ жизни в Гленлэре. Лишь через три года он после длительных раздумий возглавил только что открывшуюся в Кембридже физическую лабораторию и, соответственно, стал профессором экспериментальной физики. Согласившись на этот пост, Максвелл сразу принялся налаживать строительные работы и оснащать лабораторию (сначала собственными приборами). В Кембридже он стал читать курсы электричества, теплоты и магнетизма.

В том же 1871 году был опубликован учебник Максвелла «Theory of Heat» («Теория теплоты»), впоследствии неоднократно переизданный. В последней главе книги содержались основные постулаты молекулярно-кинетической теории и статистические идеи Максвелла. Здесь же он опроверг второе начало термодинамики, сформулированное Клаузиусом и Томсоном. В этой формулировке предсказывалась «тепловая смерть Вселенной» - чисто механическая точка зрения. Максвелл утверждал статистический характер пресловутого «второго начала», которое по его убеждению может нарушаться лишь отдельными молекулами, оставаясь справедливым в случае больших совокупностей. Это положение он проиллюстрировал парадоксом, названным «демоном Максвелла». Парадокс заключается в способности «демона» (управляющей системы) уменьшать энтропию этой системы, не затрачивая работу. Парадокс этот разрешили в двадцатом веке, указав на роль, которую играют в управляющем элементе флуктуации, и доказав, что когда «демон» получает информацию о молекулах, это повышает энтропию, а потому нарушения второго начала термодинамики не происходит.

Два года спустя увидел свет двухтомник Максвелла, названный «Трактат о магнетизме и электричестве». В нем содержались уравнения Максвелла, следствием которых стало открытие Герцем электромагнитных волн (1887 год). В трактате также была доказана электромагнитная природа света и предсказан эффект давления света. На основе этой теории Максвелл объяснил и влияние магнитного поля на распространение света. Однако сей фундаментальный труд весьма прохладно приняли корифеи науки - Стокс, Томсон, Эйри, Тэт. Особенно сложной для понимания оказалась концепция пресловутого тока смещения, существующего по Максвеллу даже в эфире, то есть в отсутствие материи. Кроме того, сильно мешал восприятию и стиль Максвелла, порой очень сумбурный в изложении.

Лаборатория в Кембридже, названная в честь Генри Кавендиша, открылась в июне 1874 года, и герцог Девонширский торжественно передал Джеймсу Максвеллу рукописи Кавендиша. В течение пяти лет Максвелл изучал наследие этого ученого, воспроизводил в лаборатории его опыты и в 1879 году выпустил под своей редакцией собрание сочинений Кавендиша, состоявшее из двух томов.

Около десяти последних лет своей жизни Максвелл занимался популяризацией науки. В своих книгах, написанных именно с этой целью, он более свободно излагал свои идеи и взгляды, делился с читателем сомнениями и говорил о проблемах, в то время еще не разрешимых. В Кавендишской лаборатории он продолжал разрабатывать совершенно конкретные вопросы, касающиеся молекулярной физики. Две его последние работы вышли в 1879 году - о теории разреженных неоднородных газов и о распределении газа под воздействием центробежных сил. Множество обязанностей он исполнял и в университете - состоял в совете университетского сената, в комиссии по реформированию математического экзамена, побывал на посту президента философского общества. В семидесятые годы у него появились ученики, среди которых были будущие известные ученые Джордж Кристалл, Артур Шустер, Ричард Глэйзбург, Джон Пойнтинг, Амброз Флеминг. И ученики, и сотрудники Максвелла отмечали его сосредоточенность, простоту общения, проницательность, утонченный сарказм и полное отсутствие честолюбия.

Зимой 1877 года у Максвелла появились первые симптомы погубившей его болезни, и через два года врачи определили у него рак. Великий ученый скончался в Кембридже 5 ноября 1879 года, в возрасте сорока восьми лет. Тело Максвелла перевезли в Гленлэр и похоронили неподалеку от имения, на скромном кладбище в деревушке Партон.

Роль Джеймса Клерка Максвелла в науке не сумели оценить по достоинству его современники, но важность его работ оказалась несомненной для следующего века. Ричард Фейман, американский физик, сказал, что открытие законов электродинамики - самое значительное событие девятнадцатого столетия, на фоне которого меркнет гражданская война в Соединенных Штатах, произошедшая в то же время…

Джеймс Клерк Максвелл (James Clerk Maxwell, 1831–1879) - выдающийся деятель шотландского Просвещения, многое сделавший для актуализации наследия кельтов, которые взаимодействовали с пространством с позиции цвета и света. Максвелл внес неоценимый вклад в понимание античных культур. Кроме того, его труды по электродинамике являются основой учения о развитии и управлении сознанием человека посредством электромагнитных волн.

Максвелл создал важнейшую систему теории света, которая опередила на тот момент и даже сегодня опережает возможности человека переживать цвет. Он научно доказал важность понимания именно восьми частотных характеристик цвета, которые определяют возможности нашего сознания. Особенно важно отметить его изучение восьмого цвета - белого, который он показал как фигуру, состоящую из частотных характеристик красного, зеленого и фиолетовых цветов. Это значит, что три цвета, определяющие самый низкий, самый высокий и средний частотные показатели, образуют белый цвет.

По сути, он создал великую теорию Геометрии цвета, которая так и не стала востребована обществом для развития человека, а ушла в научную плоскость - работу с различными частотными колебаниями. А ведь белый цвет - это, по сути, равнобедренный треугольник, обладающий центром вращения (он же точка смешения трех цветов). По аналогичной схеме работает и наше тело, если понимать его как треугольник (но это только если понимать его как треугольник). Если воссоздать в теле подобную точку смешения, то мы сможем получить наивысшую частотную характеристику, связанную с белым цветом. Это не просто электромагнитный эффект, а возможность проживания нашего духа.

Так мы изменяем поведение молекулярных связей внутри нашего тела и можем противопоставить себя магнитному полю. Но самое главное состоит в том, что Максвелл показал поступательность этого движения, то есть наращивание, где можно доказать безграничность развития нашего тела и сознания. И известное правило буравчика, которое мы изучаем, технически несет в себе совсем иное концептуальное осмысление.

Увы, великие знания Максвелла до сих пор преподаются и трактуются неверно. А ведь здесь объясняется возможность понимания, вернее, восприятия физического состояния оси как органа, который наделен электрическими показателями с особой частотой.

Наличие этой оси позволяет человеку сместить все свои энергетические характеристики, создать внутренний «волчок», что, кстати, Максвелл доказал не только посредством своей теории цветов, но и опытом с бросанием кошки вниз (ее способность приземляться на четыре лапы).

Но почему именно цвет столь важен для нас в этой связи? Потому что цветовая реакция на мозг затмила все другие реакции в нашем теле. Не научившись воспринимать цвет и правильно реагировать на него, мы все равно будем зависеть от этой реакции, и она будет мешать всем остальным восприятиям. Цвет - основа нашего зрения, а зрение - основа нашего духа, то есть дух человека питается в первую очередь цветом. Самое важное - разобраться с тремя цветами - красный, зеленый и фиолетовый (синий).

Понятно, что Максвелл не углубился в то, что он выявил, но важно то, что он это обозначил, так как именно здесь закладывается опора образования человека и развития его качества наблюдения. Что бы мы ни делали, мы зависим от цвета - и в месте, где мы живем, и в одежде, которую носим. И даже в пище, которую мы едим. Это реальная система, обладающая физическими показателями и соответствующей силой. Так что этот великий шотландец не только дал человечеству ключи к познанию природы, но и объяснил идею тартана (расцветки клеток ткани у шотландских семейств и организаций), клановости шотландцев, где скрыта комбинация развития клана. Тартан - это формула, которая имеет свои частотные показатели.

"... произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона".

Эйнштейн

Афоризмы и цитаты Джеймса Максвелла.
«Когда какое-нибудь явление можно описать как частный случай какого-нибудь общего, приложимого к другим явлениям принципа, то говорят, что это явление получило объяснение»

«…Для развития науки требуется в каждую данную эпоху не только, чтобы люди мыслили вообще, но чтобы они концентрировали свои мысли на той части обширного поля науки, которое в данное время требует разработки»

«Из всех гипотез…выбирайте ту, которая не пресекает дальнейшего мышления об исследуемых вещах»

«Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство»

«…История науки не ограничивается перечислением успешных исследований. Она должна сказать нам о безуспешных исследованиях и объяснить, почему некоторые из самых способных людей не смогли найти ключа знания и как репутация других дала лишь большую опору ошибкам, в которые они впали»


«Всякий великий человек является единственным в своем роде. В историческом шествии ученых у каждого из них своя определенная задача и свое определенное место»

«Действительный очаг науки - не тома научных трудов, но живой ум человека, и для того чтобы продвигать науку, нужно направить человеческую мысль в научное русло. Это можно сделать различными способами: огласив какое-либо открытие, отстаивая парадоксальную идею, или изобретая научную фразу, или изложив систему доктрины»



Максвелл и теория электромагнитного поля.
Максвелл изучал электрические и магнитные явления, когда многие из них уже были хорошо исследованы. Был создан закон Кулона, закон Ампера, также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде - в эфире.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.
Максвелл показал, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали - гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла - это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сегодня она называется статистической механикой). Ему первому пришла в голову идея о статистическом характере законов природы. Максвелл создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Благодаря работам Максвелла мы имеем ряд соотношений термодинамики.


Справка. Распределение Максвелла - это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие - это условие поступательного движения молекул описанное законами классической динамики.
Научных труды Максвелла : «Теория теплоты», «Материя и движение», «Электричество в элементарном изложении». Он интересовался и историей науки. В свое время ему удалось опубликовать труды Кавендиша, которые Максвелл дополнил своими комментариями.
Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О писали многие ученные. Физик Фейнман сказал о Максвелле , что открывший законы электродинамики Максвелл , смотрел через века в будущее.

Родился Джеймс Максвелл 13 июня 1831 в столице Шотландии, городе Эдинбурге, в семье адвоката и потомственного дворянина Джона Клерка Максвелла. Детство Джеймса прошло в фамильном имении в Южной Шотландии. Его мать рано умерла, и воспитанием мальчика занимался отец. Именно он привил Джеймсу любовь к техническим наукам. В 1841 он поступил в Эдинбургскую академию. Затем, в 1847 году в течение трех лет учился в университете Эдинбурга. Здесь Максвелл изучает и развивает теорию упругости, ставит научные опыты. В 1850 – 1854 гг. учился в Кембриджском университете, который окончил со степенью бакалавра.

После завершения учебы Джеймс остается преподавать в Кембридже. В это время он начинает работу над теорией цветов, впоследствии легшей в основу цветной фотографии. Максвелл также начинает интересоваться электричеством и магнитным эффектом.

В 1856 году Джеймс Максвелл стал профессором Маришаль-колледжа в Абердине (Шотландия), проработав там до 1860 года. В июне 1858 года Максвелл женился на дочери директора колледжа. Работая в Абердине, Джеймс трудится над трактатом «Об устойчивости движения колец Сатурна»(1859), признанной и одобренной научными кругами. Одновременно с этим, Максвелл занимается разработкой кинетической теорией газов, которая легла в основу современной статистической механики, а позже, в 1866 году, им был открыт закон распределения молекул по скоростям, названный его именем.

В 1860 – 1865 гг. Джеймс Максвелл был профессором на кафедре натуральной философии в Кингс-колледже (Лондон). в 1864 году вышла его статья «Динамическая теория электромагнитного поля», которая стала главной работой Максвелла и предопределила направление его дальнейших исследований. Проблемами электромагнетизма ученый занимался вплоть до конца своей жизни.

В 1871 году Максвелл вернулся в Кембриджский университет, где возглавил первую лабораторию для физических экспериментов, названную по имени английского ученого Генри Кавендиша – Кавендишская лаборатория. Там он преподавал физику и участвовал в оснащении лаборатории.

В 1873 году ученый наконец заканчивает работу над двухтомным трудом «Трактат об электричестве и магнетизме», ставшим поистине энциклопедическим наследием в области физики.

Скончался великий ученый 5 ноября 1879 года от рака и был похоронен близ родового имения, в шотландской деревне Партон.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Многие научные издания и журналы в последнее время публикуют статьи о достижениях в физике и современных ученных и редко встречаются публикации о физиках прошлого. Нам бы хотелось исправить это положение и вспомнить об одном из выдающихся физиков прошлого века Джеймсе Клерке Максвелле. Это известный английский физик, отец классической электродинамики, статистической физики и многих других теорий, физических формул и изобретений. Максвелл стал создателем и первым руководителем Кавендишской лаборатории.

Как известно, Максвелл выходцем из Эдинбурга и родился в 1831 году в дворянской семье, которая имела родственную связь с шотландской фамилией Клерков Пеникуик. Детство Максвелла прошло в поместье Гленлэр. Предки Джеймса были политическими деятелями, поэтами, музыкантами и учеными. Наверное, склонность к наукам ему передалась по наследству.

Джеймс воспитывался без матери (так как она умерла, когда ему было 8 лет) отцом, который заботливо относился к мальчику. Отец хотел, чтобы его сын изучал естественные науки. Джеймс сразу полюбил технику и быстро развивал практические навыки. Первые уроки на дому маленький Максвелл воспринял с упорством, так как ему не были по душе жесткие методы воспитания, применяемые учителем. Дальнейшее обучение проходило в аристократической школе, где у мальчика проявились большие математические способности. Особенно Максвеллу нравилась геометрия.

Многим великим людям геометрия казалась потрясающей наукой, и даже в 12 лет говорил об учебнике геометрии, как о святой книге. Максвелл любил геометрию не хуже других научных светил, но у него плохо складывались отношения со школьными товарищами. Они постоянно придумывали ему обидные прозвища и одной из причин была его нелепая одежда. Отец Максвелла считался чудаком и покупал сыну одежду, которая вызывала улыбку.

Максвелл уже в детстве подавал большие надежды в области науки. В 1814 году его отдали учиться Эдинбургскую гимназию, а в 1846 году ему вручили медаль за заслуги в области математики. Его отец гордился своим сыном и ему предоставилась возможность представлять одну из научных работ сына перед коллегией Эдинбургской Академии наук. Эта работа касалось математических расчетов эллиптических фигур. Тогда эта работа имела название «О черчении овалов и об овалах со многими фокусами». Она была написана в 1846 году, а опубликована для широких масс в 1851.

Усиленно изучать физику Максвелл начал после перевода в Эдинбургский университет. Его учителями стали Калланд, Форбс и другие. Они сразу увидели в Джеймсе высокий интеллектуальный потенциал и неудержимое стремление изучать физику. До этого периода Максвелл сталкивался с отдельными разделами физики и изучал оптику (посвятил много времени поляризации света и кольцам Ньютона). В этом ему помогал известный физик Вильям Николь, который в свое время изобрел призму.

Конечно, Максвеллу не были чужды другие естественные науки, и он особое внимание уделял изучению философии, истории науки и эстетики.

В 1850 году он поступает в Кембридж, в котором когда-то работал Ньютон и в 1854 году получает академическую степень. После этого его исследования коснулись области электричества и электроустановок. А в 1855 году ему предоставили членство в совете Тринити-колледжа.

Первая значительная научная работа Максвелла – это «О фарадеевых силовых линиях», которая появилась в 1855 году. В свое время Больцман сказал о статье Максвелла, что данная работа имеет глубокий смысл и показывает насколько целеустремленно подходит к научной работе молодой ученый. Больцман считал, что Максвелл не только разбирался в вопросах естествознания, но и внес особый вклад в теоретическую физику. Максвелл обозначил в своей статье все тенденции эволюции физики на несколько последующих десятилетий. Позже к такому же выводу пришел Кирхгоф, Маха и .

Как образовалась Кавендишская лаборатория?

После завершения учебы в Кембридже Джеймс Максвелл остается здесь, как преподаватель и в 1860 году он становится членом Лондонского королевского общества. В это же время он переезжает в Лондон, где ему предоставляют место руководителя кафедры физики в Кинг-колледже Лондонского университета. На этой должности он проработал 5 лет.

В 1871 году Максвелл возвращается в Кембридж и создает первую в Англии лабораторию для исследований в области физики, которая получила название Кавендишская лаборатория (в честь Генри Кавендиша). Развитию лаборатории, которая стала настоящим центром научных исследований, Максвелл посвятил остаток своей жизни.

О жизни Максвелла известно мало, так как он не вел записей и дневников. Это был скромный и застенчивый человек. Умер Максвелл в возрасте 48 лет от онкологического заболевания.

Какое научное наследие Джеймса Максвелла?

Научная деятельность Максвелла охватывала многие направления в физике: теория электромагнитных явлений, кинематическая теория газов, оптика, теория упругости и другие. Первое, что заинтересовало Джеймса Максвелла – это изучение и проведение исследований в физиологии и физике цветного зрения.

Максвеллу впервые удалось получить цветное изображение, которое получилось благодаря одновременной проекции красного, зеленного и синего диапазона. Этим Максвелл очередной раз доказал миру, что цветной образ зрения основан на трехкомпонентной теории. Данное открытие положило начало создания цветных фотографий. В период с 1857-1859 года Максвеллу удалось исследовать устойчивость колец Сатурна. Его теория говорит о том, что кольца Сатурна будут устойчивы только при одном условии – несвязанности между собой частиц или тел.

С 1855 года Максвелл уделял особое внимание работе в области электродинамики. Существует несколько научных работ этого периода «О фарадеевых силовых линиях», « О физических силовых линиях», «Трактат об электричестве и магнетизме» и «Динамическая теория электромагнитного поля».

Максвелл и теория электромагнитного поля.

Когда Максвелл стал изучать электрические и магнитные явления, то многие из них уже были хорошо исследованы. Был создан закон Кулона , закон Ампера , также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде – в эфире.

Максвелл поддерживал теорию Фарадея о существовании электромагнитных полей, то есть был сторонником возникающих процессов вокруг заряда и тока.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.

Следующим открытием Максвелла было то, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали – гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла – это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сейчас данная наука называется статистическая механика ). Максвеллу первому пришла в голову идея о статистическом характере законов природы. Он создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Также благодаря работам Максвелла мы имеем ряд соотношений термодинамики.

Справка. Распределение Максвелла – это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие – это условие поступательного движения молекул описанное законами классической динамики.

У Максвелла было множество научных трудов, которые были опубликованы: «Теория теплоты», «Материя и движение», « Электричество в элементарном изложении» и другие. Максвелл не только двигал науку в период, но и интересовался ее историей. В свое время ему удалось опубликовать труды Г. Кавендиша, которые он дополнил своими комментариями.

Чем запомнился миру Джеймс Клерк Максвелл?

Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О максвелле писали многие ученные. Физик Р. Фейнман сказал о нем, что Максвелл, открывший законы электродинамики, смотрел через века в будущее.

Эпилог. Джеймс Клерк Максвелл умер 5 ноября 1879 года в Кембридже. Его похоронили в небольшой шотландской деревушке возле его любимой церкви, которая находится не далеко возле его родового поместья.