Карточки примеры на сложение смешанных дробей. Действия с дробями

Является немало важной даже в повседневной жизни. Вычитание часто может пригодиться при подсчете сдачи в магазине. Например, у вас с собой одна тысяча (1000) рублей, а ваши покупки составляют 870. Вы, еще не расплатившись, поинтересуетесь: «А сколько же сдачи у меня останется?». Так вот, 1000-870 и будет 130. И таких подсчетов много разных и не освоив эту тему, будет трудно в реальной жизни.Вычитание – это арифметическое действие, в процессе которого из первого числа вычитается второе число, а итогом будет третье.

Формула сложения выражается так: a - b = c

a – яблок у Васи изначально.

b – количество яблок отданных Пете.

c – яблок у Васи после передачи.

Подставим в формулу:

Вычитание чисел

Вычитание чисел легко освоить любому первокласснику. Например, из 6 нужно вычесть 5. 6-5=1, 6 больше числа 5 на единицу, значит, и ответ будет единицей. Можно для проверки произвести сложение 1+5=6. Если вы не знакомы со сложением, то можете прочитать нашу .

Большое число делится на части, возьмем число 1234, а в нем: 4-единицы, 3-десятки, 2-сотни, 1-тысячи. Если вычитать единицы, то все легко и просто. Но допустим пример: 14-7. В числе 14: 1-десяток, а 4- единицы. 1 десяток – 10 единиц. Тогда получаем 10+4-7, сделаем так: 10-7+4, 10 – 7 =3, а 3+4=7. Ответ найден верно!

Рассмотрим пример 23 -16. Первое число 2 десятка и 3 единицы, а второе 1 десяток и 6 единиц. Представим число 23 как 10+10+3, а 16 как 10+6, тогда представим 23-16 как 10+10+3-10-6. Тогда 10-10=0, останется 10+3-6, 10-6=4, тогда 4+3=7. Ответ найден!

Аналогично делается с сотнями и тысячами

Вычитание столбиком

Ответ: 3411.

Вычитание дробей

Представим арбуз. Арбуз – это одно целое, а разрезав пополам, мы получим что-то меньшее, чем единица верно? Половинка единицы. Как это записать?

½, так мы обозначаем половину одного целого арбуза, а если поделить арбуз на 4 равные части, то каждая из них будет обозначаться ¼. И так далее…

вычитание дробей, как это?

Все просто. Вычтем из 2/4 ¼ -ую. При вычитании важно, чтобы знаменатель(4) одной дроби совпадал со знаменателем второй. (1) и (2) – называются числителями.

Итак, вычитаем. Убедились, что знаменатели одинаковые. Тогда вычитаем числители (2-1)/4, так получаем 1/4.

Вычитание пределов

Вычитание пределов – это не сложно. Тут достаточно простой формулы, в которой говорится, что если предел разности функций стремится к числу а, то это равносильно разности этих функций, предел каждой из которых стремится к числу а.

Вычитание смешанных чисел

Смешанное число - это целое число с дробной частью. То есть если числитель меньше знаменателя – то дробь меньше единицы, а если числитель больше знаменателя, то дробь больше единицы. Смешанное число - это дробь, которая больше единицы и у которой выделена целая часть, изобразим на примере:

Чтобы произвести вычитание смешанных чисел, нужно:

    Привести дроби к общему знаменателю.

    Целую часть внести в числитель

    Произвести вычисление

Урок вычитание

Вычитание – это арифметическое действие, в процессе которого ищется разность 2 чисел и ответов является третье.Формула сложения выражается так: a - b = c .

Примеры и задачи Вы сможете найти ниже.

При вычитании дробей следует помнить, что:

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Вычитание 1 класс

Первый класс – начало пути, начало обучения и изучения основ, в том числе и вычитания. Обучение стоит вести в игровой форме. Всегда в первом классе вычисления начинают с простых примеров на яблоках, конфетах, грушах. Используется этот метод не зря, а потому что детям намного интереснее, когда с ними играют. И это не единственная причина. Яблоки, конфеты и тому подобное дети видели очень часто в свой жизни и имели дело с передачей и количеством, поэтому научить сложению таких вещей будет не сложно.

Задачи на вычитание первоклассникам можно придумать целую тучу, к примеру:

Задача 1. Утром, гуляя по лесу ежик нашел 4 грибочка, а вечером, когда пришел домой, ежик на ужин скушал 2 грибочка. Сколько грибочков осталось?

Задача 2. Маша пошла в магазин за хлебом. Мама дала маше 10 рублей, а хлеб стоит 7 рублей. Сколько Маша должна принести денег домой?

Задача 3. В магазине утром на прилавке находилось 7 килограмм сыра. До обеда посетители выкупили 5 килограмм. Сколько килограмм осталось?

Задача 4. Рома вынес во двор конфеты, который дал ему папа. У Ромы было 9 конфет, а своему другу Никите он дал 4. Сколько конфет осталось у Ромы?

Первоклассники в основном решают задачи, в которых ответом будет число от 1 до 10.

Вычитание 2 класс

Второй класс это уже выше первого, а соответственно и примеры для решения тоже. Итак, приступим:

Числовые задания:

Однозначные числа:

  1. 10 - 5 =
  2. 7 - 2 =
  3. 8 - 6 =
  4. 9 - 1 =
  5. 9 - 3 - 4 =
  6. 8 - 2 - 3 =
  7. 9 - 9 - 0 =
  8. 4 - 1 - 3 =

Двузначные числа:

  1. 10 - 10 =
  2. 17 - 12 =
  3. 19 - 7 =
  4. 15 - 8 =
  5. 13 - 7 =
  6. 64 - 37 =
  7. 55 - 53 =
  8. 43 - 12 =
  9. 34 - 25 =
  10. 51 - 17 - 18 =
  11. 47 - 12 - 19 =
  12. 31 - 19 - 2 =
  13. 99 - 55 - 33 =

Текстовые задачи

Вычитание 3-4 класс

Суть вычитания в 3-4 классе – вычитание в столбик больших чисел.

Рассмотрим пример 4312-901. Для начала запишем числа друг под другом, так чтобы из числа 901 единица была под 2, 0 под 1, 9 под 3.

Затем производим вычитание справа налево, то есть из числа 2 число 1. Получаем единицу:

Вычитая из тройки девять, нужно позаимствовать 1 десяток. То есть из 4 вычитаем 1 десяток. 10+3-9=4.

А так как у 4 заняли 1, то 4-1=3

Ответ: 3411.

Вычитание 5 класс

Пятый класс – это время для работы над сложными дробями с разными знаменателями. Повторим правила:1. Вычитаются числители, а не знаменатели.

Итак, вычитаем. Убедились, что знаменатели одинаковые. Тогда вычитаем числители (2-1)/4, так получаем 1/4. При складывании дробей, вычитаются только числители!

2. Чтобы осуществить вычитание, убедитесь, что знаменатели равны.

Попалась разность дробей, к примеру, 1/2 и 1/3, то домножить придется не одну дробь, а обе, чтобы привести к общему знаменателю. Самый простой способ сделать это: первую дробь умножить на знаменатель второй, а вторую дробь на знаменатель первой, получаем: 3/6 и 2/6. Складываем (3-2)/6 и получаем 1/6.

3. Сокращение дроби производится путем деления числителя и знаменателя на одинаковое число.

Дробь 2/4 можно привести к виду ½. Почему? Что из себя представляет дробь? ½ = 1:2, а если делить 2 на 4, то это тоже самое, что делить 1 на 2. Поэтому дробь 2/4 = 1/2.

4. Если дробь больше единицы, то можно выделить целую часть.

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Вычитание презентация

Ссылка на презентацию находится ниже. Презентация рассматривает основные вопросы вычитания шестого класса:Скачать презентацию

Презентация сложение и вычитание

Примеры на сложение и вычитание

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Быстрый счет"

Игра «быстрый счет» поможет вам усовершенствовать свое мышление . Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Игра "Математические матрицы"

«Математические матрицы» великолепное упражнение для мозга детей , которое поможет вам развить его мыслительную работу, устный счет, быстрый поиск нужных компонентов, внимательность. Суть игры заключается в том, что игроку предстоит из предложенных 16 чисел найти такую пару, которая в сумме даст данное число, например на картинке ниже данное число «29», а искомая пара «5» и «24».

Игра "Числовой охват"

Игра «числовой охват» нагрузит вашу память во время занятий с данным упражнением.

Суть игры – запомнить цифру, на запоминание которой отводится около трех секунд. Затем нужно ее воспроизвести. По мере прохождения этапов игры, количество цифр растет, начинаете с двух и далее.

Игра "Математические сравнения"

Прекрасная игра, с которой вы сможете расслабиться телом, а напрячься мозгом. На скриншоте показан пример данной игры, в которой будет вопрос, связанный с картинкой, а вам надо будет ответить. Время ограниченно. Как много вы успеете ответить?

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается , если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ . Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ . Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4 , поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить 7 на знаменатель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Итак, что из себя представляют дроби, виды дробей, преобразования - мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями - это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений...

Дорешайте уж пример самостоятельно. Не логарифм какой... Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах... И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да...

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби - на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки...

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе - само число, в знаменателе - единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами - то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению - вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой - повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей - в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.

Yandex.RTB R-A-339285-1

Действия сложения и вычитания при одинаковых знаменателях

Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.

К примеру: 3 7 + 2 7 = 3 + 2 7 = 5 7 и 5 11 - 4 11 = 5 - 4 11 = 1 11 .

Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:

Определение 1

Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.

Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей - новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).

Укажем пример применения сформулированного правила.

Пример 1

Заданы алгебраические дроби: x 2 + 2 · x · y - 5 x 2 · y - 2 и 3 - x · y x 2 · y - 2 . Необходимо осуществить их сложение.

Решение

Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.

Сложив многочлены, являющиеся числителями исходных дробей, получим: x 2 + 2 · x · y − 5 + 3 − x · y = x 2 + (2 · x · y − x · y) − 5 + 3 = x 2 + x · y − 2 .

Тогда искомая сумма будет записана как: x 2 + x · y - 2 x 2 · y - 2 .

В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:

x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + 2 · x · y - 5 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2

Ответ: x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2 .

Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.

Пример 2

Необходимо вычесть из алгебраической дроби x x 2 - 4 · y 2 дробь 2 · y x 2 - 4 · y 2 .

Решение

Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:

x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = x - 2 · y x 2 - 4 · y 2

Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:

x - 2 · y x 2 - 4 · y 2 = x - 2 · y (x - 2 · y) · (x + 2 · y) = 1 x + 2 · y

Ответ: x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = 1 x + 2 · y .

По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:

1 x 5 + 2 · x 3 - 1 + 3 · x - x 4 x 5 + 2 · x 3 - 1 - x 2 x 5 + 2 · x 3 - 1 - 2 · x 3 x 5 + 2 · x 3 - 1 = 1 + 3 · x - x 4 - x 2 - 2 · x 3 x 5 + 2 · x 3 - 1

Действия сложения и вычитания при разных знаменателях

Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.

К примеру, 2 5 + 1 3 = 6 15 + 5 15 = 11 15 или 1 2 - 3 7 = 7 14 - 6 14 = 1 14 .

Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:

Определение 2

Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:

  • исходные дроби привести к общему знаменателю;
  • выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.

Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.

Приведение алгебраических дробей к общему знаменателю

Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:

  • сначала определяем общий знаменатель алгебраических дробей;
  • затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
  • последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
Пример 3

Заданы алгебраические дроби: a + 2 2 · a 3 - 4 · a 2 , a + 3 3 · a 2 - 6 · a и a + 1 4 · a 5 - 16 · a 3 . Необходимо привести их к общему знаменателю.

Решение

Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2 · a 3 − 4 · a 2 = 2 · a 2 · (a − 2) , 3 · a 2 − 6 · a = 3 · a · (a − 2) и 4 · a 5 − 16 · a 3 = 4 · a 3 · (a − 2) · (a + 2) . Отсюда можем записать общий знаменатель: 12 · a 3 · (a − 2) · (a + 2) .

Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:

  • для первой дроби: 12 · a 3 · (a − 2) · (a + 2) : (2 · a 2 · (a − 2)) = 6 · a · (a + 2) ;
  • для второй дроби: 12 · a 3 · (a − 2) · (a + 2) : (3 · a · (a − 2)) = 4 · a 2 · (a + 2);
  • для третьей дроби: 12 · a 3 · (a − 2) · (a + 2) : (4 · a 3 · (a − 2) · (a + 2)) = 3 .

Следующий шаг - умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:

a + 2 2 · a 3 - 4 · a 2 = (a + 2) · 6 · a · (a + 2) (2 · a 3 - 4 · a 2) · 6 · a · (a + 2) = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) a + 3 3 · a 2 - 6 · a = (a + 3) · 4 · a 2 · (a + 2) 3 · a 2 - 6 · a · 4 · a 2 · (a + 2) = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) a + 1 4 · a 5 - 16 · a 3 = (a + 1) · 3 (4 · a 5 - 16 · a 3) · 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2)

Ответ: a + 2 2 · a 3 - 4 · a 2 = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) ; a + 3 3 · a 2 - 6 · a = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) ; a + 1 4 · a 5 - 16 · a 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2) .

Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.

Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.

Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.

Пример 4

Заданы алгебраические дроби: 1 - 2 · x x 2 + x и 2 · x + 5 x 2 + 3 · x + 2 . Необходимо осуществить действие их сложения.

Решение

Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x 2 + x = x · (x + 1) , а x 2 + 3 · x + 2 = (x + 1) · (x + 2) , т.к. корни квадратного трехчлена x 2 + 3 · x + 2 это числа: - 1 и - 2 . Определяем общий знаменатель: x · (x + 1) · (x + 2) , тогда дополнительные множители будут: x + 2 и – x для первой и второй дробей соответственно.

Таким образом: 1 - 2 · x x 2 + x = 1 - 2 · x x · (x + 1) = (1 - 2 · x) · (x + 2) x · (x + 1) · (x + 2) = x + 2 - 2 · x 2 - 4 · x x · (x + 1) · x + 2 = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) и 2 · x + 5 x 2 + 3 · x + 2 = 2 · x + 5 (x + 1) · (x + 2) = 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 · x 2 + 5 · x x · (x + 1) · (x + 2)

Теперь сложим дроби, которые мы привели к общему знаменателю:

2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · 2 · x x · (x + 1) · (x + 2)

Полученную дробь возможно сократить на общий множитель x + 1:

2 + 2 · x x · (x + 1) · (x + 2) = 2 · (x + 1) x · (x + 1) · (x + 2) = 2 x · (x + 2)

И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:

2 x · (x + 2) = 2 x 2 + 2 · x

Запишем ход решения кратко в виде цепочки равенств:

1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 1 - 2 · x x · (x + 1) + 2 · x + 5 (x + 1) · (x + 2) = = 1 - 2 · x · (x + 2) x · x + 1 · x + 2 + 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · x + 1 x · (x + 1) · (x + 2) = 2 x · (x + 2) = 2 x 2 + 2 · x

Ответ: 1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 2 x 2 + 2 · x

Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.

Пример 5

Необходимо осуществить вычитание дробей: 2 1 1 3 · x - 2 21 и 3 · x - 1 1 7 - 2 · x .

Решение

Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:

2 1 1 3 · x - 2 21 = 2 4 3 · x - 2 21 = 2 4 3 · x - 1 14 и 3 · x - 1 1 7 - 2 · x = 3 · x - 1 - 2 · x - 1 14

Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.

Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 3 4 , а второй на - 1 2 , тогда получим:

2 4 3 · x - 1 14 = 3 4 · 2 3 4 · 4 3 · x - 1 14 = 3 2 x - 1 14 и 3 · x - 1 - 2 · x - 1 14 = - 1 2 · 3 · x - 1 - 1 2 · - 2 · x - 1 14 = - 3 2 · x + 1 2 x - 1 14 .

Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14:

3 2 x - 1 14 = 14 · 3 2 14 · x - 1 14 = 21 14 · x - 1 и - 3 2 · x + 1 2 x - 1 14 = 14 · - 3 2 · x + 1 2 x - 1 14 = - 21 · x + 7 14 · x - 1 .

Наконец, выполним требуемое в условии задачи действие – вычитание:

2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 14 · x - 1 - - 21 · x + 7 14 · x - 1 = 21 - - 21 · x + 7 14 · x - 1 = 21 · x + 14 14 · x - 1

Ответ: 2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 · x + 14 14 · x - 1 .

Сложение и вычитание алгебраической дроби и многочлена

Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1 .

Пример 6

Необходимо произвести сложение многочлена x 2 − 3 с алгебраической дробью 3 · x x + 2 .

Решение

Запишем многочлен как алгебраическую дробь со знаменателем 1: x 2 - 3 1

Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:

x 2 - 3 + 3 · x x + 2 = x 2 - 3 1 + 3 · x x + 2 = x 2 - 3 · (x + 2) 1 · x + 2 + 3 · x x + 2 = = x 3 + 2 · x 2 - 3 · x - 6 x + 2 + 3 · x x + 2 = x 3 + 2 · x 2 - 3 · x - 6 + 3 · x x + 2 = = x 3 + 2 · x 2 - 6 x + 2

Ответ: x 2 - 3 + 3 · x x + 2 = x 3 + 2 · x 2 - 6 x + 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.