Методика измерения электромагнитных полей. Раздел IV

Скачать документ

Государственная система санитарно-эпидемиологического
нормирования Российской Федерации

4.3. МЕТОДЫ КОНТРОЛЯ. ФИЗИЧЕСКИЕ ФАКТОРЫ

ОПРЕДЕЛЕНИЕ УРОВНЕЙ
ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
НА РАБОЧИХ МЕСТАХ ПЕРСОНАЛА

СРЕДСТВА КОТОРЫХ РАБОТАЮТ
В НЧ, СЧ И ВЧ ДИАПАЗОНАХ

Методические указания
МУК 4.3.677-97


2. Представлены Госкомсвязи России письмом от 27.05.97 № НТУОТ-1/058. Одобрены Комиссией по государственному санитарно-эпидемиологическому нормированию при Минздраве России.

3. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации от 6 ноября 1997 г.

4. Введены впервые.

1. Область применения. 2

2. Сущность метода. 2

3. Основные положения методики расчетного прогнозирования. 3

3.1. Излучение источников электромагнитного поля. 3

3.1.1. Излучение экранов бикоаксиальных фидеров передатчиков с симметричным выходом.. 3

3.1.2. Излучение экранов коаксиальных фидеров передатчиков с несимметричным выходом.. 8

3.1.3. Излучение щелей шкафов передатчиков. 9

3.1.4. Излучение антенн радиоцентра. 10

3.2. Расчет токов, наведенных на металлические элементы.. 10

3.2.1. Метод интегрального уравнения в тонкопроволочном приближении. 10

3.2.2. Метод сшивания в точках при кусочно-синусоидальном базисе. 11

3.3. Расчет уровней электромагнитного поля. 13

4. Методика измерения уровней электромагнитного поля. 14

4.1. Операции измерений. 14

4.2. Средства измерения. 14

4.3. Условия измерений. 15

4.4. Проведение измерений. 15

УТВЕРЖДАЮ

Главный государственный


санитарный врач Российской Федерации,

Г. Г. Онищенко

МУК 4.3.677-97

Дата введения: с момента утверждения.


4.3. МЕТОДЫ КОНТРОЛЯ. ФИЗИЧЕСКИЕ ФАКТОРЫ.

ОПРЕДЕЛЕНИЕ УРОВНЕЙ
ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
НА РАБОЧИХ МЕСТАХ ПЕРСОНАЛА
РАДИОПРЕДПРИЯТИЙ, ТЕХНИЧЕСКИЕ
СРЕДСТВА КОТОРЫХ РАБОТАЮТ
В НЧ, СЧ И ВЧ ДИАПАЗОНАХ

Методические указания

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Методические указания составлены в помощь инженерам органов и учреждений санитарно-эпидемиологической службы, инженерно-техническим работникам, проектным организациям средств связи с целью обеспечения предупредительного санитарного надзора за источниками излучения кило- (НЧ), гекто- (СЧ) и декаметрового (ВЧ) диапазонов на предприятиях радиовещания и радиосвязи, а также для прогнозирования уровней напряженности электромагнитного поля при организации рабочих мест обслуживающего персонала.


2. СУЩНОСТЬ МЕТОДА

Методы контроля уровней электромагнитных полей на рабочих местах персонала радиопредприятий НЧ, СЧ и ВЧ диапазонов содержат метод расчетного прогнозирования напряженности электромагнитного поля излучающих технических средств радиосвязи и радиовещания в кило-, гекто- и декаметровом диапазонах волн, а также методику измерений уровней электромагнитного поля. Расчетные и экспериментальные исследования, производимые в соответствии с данной методикой, являются необходимыми и достаточными при проведении электромагнитной экспертизы излучающих объектов.

Метод расчетного прогнозирования электромагнитных полей на рабочих местах персонала, обслуживающего технические средства НЧ, СЧ и ВЧ диапазонов базируется на строгих решениях соответствующих электродинамических задач тонкопроволочных структур, при известных функциях распределения токов по излучателям, которые определяются на основе приближенных решений.

Методические указания распространяются на радиотехнические объекты, которые могут быть укомплектованы как техническими средствами одного частотного диапазона, так и техническими средствами различных частотных диапазонов. Электромагнитные поля технических средств могут отличаться интенсивностью, поляризацией, частотами, зависимостью от параметров почвы и т.д. Методические указания учитывают индивидуальность реальных объектов, проявляющуюся (с точки зрения электромагнитной обстановки) в различии размещения и ориентации отдельных источников излучения, в несовпадении расписаний смены волн, в неодинаковом наборе технических средств.

К основным источникам электромагнитного поля внутри технических зданий на рабочих местах обслуживающего персонала относятся:


Особенностью электромагнитного прогнозирования в НЧ, СЧ и ВЧ диапазонах является то, что поле необходимо определять в ближней зоне излучения. При этом напряженность поля определяется как суперпозиция полей источников излучения и вторичных полей, создаваемых токами, наведенными этими источниками (т.е. первичным полем) на металлические поверхности помещений (каркасы и обшивка шкафов передатчиков, трубы водяного охлаждения, внешние поверхности экранов коаксиальных и бикоаксиальных внутренних фидеров и т.п.).

Учесть эти факторы возможно только решением соответствующей электродинамической задачи, в рамках которой находятся наведенные токи.

3.1. ИЗЛУЧЕНИЕ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Первичное поле источников излучения рассчитывается поэтапно. В качестве сторонних источников рассматриваются поля, создаваемые токами на внешних поверхностях экранов фидеров, излучением из щелей шкафов передатчиков, а в случае неэкранированного здания - излучением антенн радиоцентра. Расчет токов экранов фидеров выполняется на основе теории длинных линий; волновые сопротивления эквивалентных линий, образованных экранами и шинами заземления, находятся путем решения двумерной электростатической задачи; в качестве возбуждающих источников рассматриваются вертикальные участки шин заземления в сечении перехода на наружний фидер, обладающие конечным индуктивным сопротивлением и возбуждающиеся за счет асимметрии тока передатчиков с симметричным выходом или за счет недостаточного экранирующего действия проволочного экрана наружного концетрического фидера передатчика с несимметричным выходом. Излучение щелей шкафов рассматривается как действие эквивалентных магнитных токов, текущих вдоль щелей. Поля, создаваемые излучением антенн рассчитываются методом, учитывающим реальные электрофизические параметры подстилающей поверхности.

3.1.1. ИЗЛУЧЕНИЕ ЭКРАНОВ БИКОАКСИАЛЬНЫХ ФИДЕРОВ ПЕРЕДАТЧИКОВ С СИММЕТРИЧНЫМ ВЫХОДОМ


Расчет поля, создаваемого излучением бикоаксиальных фидеров, выполняется за 5 этапов:

1) расчет геометрических параметров эквивалентой линии (ЭЛ), одним проводом которой является экран фидера, другим - шина заземления;

2) расчет параметров ЭЛ - волновых сопротивлений однородных участков и импедансов в сечениях стыков этих участков определенных в сторону передатчика;

3) расчет параметров выходной цепи ЭЛ (вертикальный участок шины заземления, антенный фидер) и напряжения на выходе ЭЛ, т.е. в сечении перехода на наружний концетрический фидер;

4) расчет тока ЭЛ на каждом однородном участке;

5) расчет поля, создаваемого этим током ЭЛ.

На первом этапе вводится декартова система координат таким образом, чтобы плоскость (XOY) совпадала с плоскостью земли. Азимутальная ориентация осей (ОХ) и (OY) может быть произвольной. Данная основная система является общей для всех фидеров и других элементов здания и используется впоследствии при всех расчетах. Фидер представляется каскадным соединением однородных отрезков ЭЛ. Из соображений унификации каждый однородный отрезок должен быть прямолинейным, т.е. его длина не должна превышать длину участка фидера между соседними поворотами. В тех случаях, когда в пределах прямолинейного участка имеется резкое изменение однородности ЭЛ (скачкообразное изменение расстояния между фидером и шиной), можно разделить этот участок на два или более однородных отрезка. Каждый однородный отрезок характеризуется декартовыми координатами его крайних точек. Для определенности точки берутся на экране фидера (а не на шине). Координаты должны образовывать упорядоченную пару векторов, очередность записи которых определяет положительное направление тока на данном отрезке (1-й вектор - начало отрезка, 2-й - конец). Определение пространственного положения отрезков ЭЛ необходимо для расчета создаваемого ее током поля.

На втором этапе выполняется расчет волновых сопротивлений ЭЛ путем решения двумерной электростатической задачи методом интегрального уравнения, которое в свою очередь решается методом моментов.

Волновое сопротивление линии передачи полностью определяются ее погонной емкостью С с, Ф/м, которая характеризует электростатическую связь между проводами линии, т.е. определяет величину погонного заряда провода при некоторой разности потенциалов проводов в соответствии с соотношениями:

Q 1 = С л (j 1 - j 2), Q 2 = С л (j 2 - j 1), (3.1)

где Q 1 и Q 2 - соответственно погонные заряды провода 1 и провода 2, Кл/м, причем Q 2 = -Q 1 (для определенности считается, что провод 1 - экран фидера, провод 2 - шина заземления);

j 1 и j 2 - соответственно потенциалы провода 1 и провода 2, В.

Для определения погонной емкости С л достаточно решить следующую электростатическую задачу: потенциал провода 1j 1 задать равным, например, 1 В, потенциал провода 2 положить равным нулю, т.е. j 2 = 0 и найти погонные заряды проводов. Тогда из (3.1) находится емкость по формуле:

где Q л - погонный заряд одного из проводников (безразлично какого), Кл/м;

Абсолютное значение разности потенциалов, В.

При решении электростатической задачи о нахождении погонных зарядов проводов линии целесообразно использовать интегральное уравнение (являющееся решением известного дифференциального уравнения Пуассона):

, (3.3)

где r - плотность заряда, Кл/м 3 ;

e 0 - электрическая постоянная;

где v и v` - радиусы-векторы точек пространства (v - точка наблюдения; v` - переменная интегрирования);

r - расстояние между точками v и v`.

Поскольку заряд существует только на поверхности проводников, объемный интеграл можно заменить соответствующим поверхностным (при этом плотность заряда р является поверхностной, Кл/м 2 , в поперечном сечении относительно оси линии она будет функцией криволинейной координаты, отсчитываемой вдоль контура поперечного сечения проводника; вдоль линии - константой). Далее, поскольку потенциалы точек, лежащих на поверхности проводников известны, левую часть (3.3) можно рассматривать как заданную функцию. При таком подходе выражение (3.3) является уравнением Фредгольма 1-го рода.

Линия полагается бесконечно протяженной (в обе стороны от исследуемого сечения). Сплошные поверхности проводников заменяются равномерно заряженными полосками нулевой толщины, протяженность которых (в продольном направлении) много больше поперечных размеров линии (что соответствует ее бесконечной протяженности). Дискретное распределение заряда по полоскам является приближенным аналогом непрерывного распределения плотности заряда по сплошным поверхностям. Особенность в интегральном уравнении, имеющая место при v ® v`, исключается тем, что в случае распределения заряда по поверхности величина заряда в точке v` (т.е. на бесконечно малой площадке, содержащей точку v, в которой вычисляется потенциал) стремится к нулю.

Выражения для потенциалов полосок образуют систему уравнений, которая в матричной записи имеет вид:

[Р] [q] = [j], (3.4)

где [Р] - комплексная матрица потенциальных коэффициентов размерностью М? М, каждый элемент которой Р^ представляет собой коэффициент при заряде j-й полоски q^ - интеграл в (3.3), взятый по поверхности j-й полоски, подынтегральная функция которого определяется i-й и j-й полосками с учетом того, что за знак интеграла вынесена искомая функция (т.е. в подынтегральной функции q (v") = 1 Кл); [q] - вектор-столбец погонных зарядов полосок, Кл/м; [j] - вектор-столбец потенциалов полосок, В. Решением системы (3.4) находятся погонные заряды полосок.

Полные погонные заряды проводников находятся как соответствующие суммы зарядов образующих их полосок.

Учет влияния полупроводящей земли в методе моментов может быть осуществлен введением зеркальных изображений полосок. Эквивалентные погонные заряды зеркальных изображений полностью определяются погонными зарядами соответствующих полосок, поэтому размер матрицы /Р/ в (3.4) остается при этом неизменным (к каждому элементу р ij добавляется составляющая потенциала, создаваемая на i-й полоске зеркальным изображением j-й полоски).

Волновые сопротивления однородных участков находятся по формуле

где С 0 - скорость света в воздухе.

После нахождения волновых сопротивлений однородных участков полностью восстанавливается схема ЭЛ, которая показана на рис. 1. Линия состоит из N каскадно включенных участков. Каждый i-й участок характеризуется волновым сопротивлением W i и координатой своего конца, которая представляет собой электрическое расстояние от передатчика Q i (электрическая длина i-гo отрезка - есть разность Q i - Q i -1). На схеме использованы обозначения: Z i , Z 2 , ... Z N - входные импедансы отрезков; Z ш - импеданс вертикального участка шины заземления; Z c - входной импеданс наружного фидера по однотактной волне; Е синф - напряжение синфазной волны на выходе внутреннего фидера.

Входные импедансы отрезков находятся по рекуррентной формуле:

, , (3.6)

На третьем этапе рассчитываются импеданс вертикального участка шины заземления Z ш, входной импеданс наружного фидера по однотактной волне Z c и напряжение на выходе ЭЛ u n (см. рис. 1).

Импеданс вертикального участка шины заземления Z ш рассчитывается по формуле:

Z ш = j?L ш, (3.7)

где w - круговая частота, рад/с;

L ш - индуктивность шины, Гн.

Индуктивность шины L ш следует рассчитывать по формуле

,

где - магнитная проницаемость воздуха;

l - длина шины;

g - величина, значение которой находится по формуле

где с - ширина шины;

К и Е - полные эллиптические интегралы первого и второго рода с модулем k, определяемые из уравнения

где К`, Е` - полные эллиптические интегралы с дополнительным модулем

b - толщина шины.

Схема эквивалентной линии, образованной экраном внутреннего фидера и шиной заземления

Для расчета волнового сопротивления наружного фидера по однотактной волне (т.е. величины Z c) используется тот же метод, что и для нахождения волновых сопротивлений однородных участков.

Для оценки величины Е синф используется нормируемый показатель - максимально допустимая асимметрия токов на выходе двухтактного каскада, т.е. предполагается, передатчик исправен. Амплитудное значение е синф принимается равным 2 ... 3 % от амплитудного значения противофазной составляющей напряжения при 100 % модуляции.

Цепь на выходе ЭЛ (см. рис. 1) представляет собой делитель напряжения, одним плечом которого является импеданс Z c , другое образовано параллельным соединением Z ш и Z N . Следовательно, напряжение в сечении ЭЛQ = Q N определяется соотношением:

. (3.8)

Далее, на четвертом этапе, находится ток ЭЛ. Для этого в пределах каждого i-гoоднородного отрезка вводятся амплитуды падающей U i и отраженной V i волн напряжения, отнесенные ко входному сечению данного отрезка (так что имеет место равенство U i + V i = u i-1). Величины U i и V i находятся из условия выполнения закона Ома во входном сечении и непрерывности напряжения в ЭЛ как функции 0. Опуская громоздкие промежуточные выкладки запишем рекуррентные соотношения для U i , V i и напряжений u i в сеченияхQ 1 , Q 2 , ... Q i , ... Q N -1 , (напряжение u n уже найдено):

, u i-1 = U i + V i , i = N - 1, N - 2, … 1.

Ток i-гo отрезка при этом определяется выражением:

Таким образом, на первых четырех этапах находится распределение тока по каждому однородному отрезку ЭЛ.

Пятый этап. Выражения для составляющих поля Е z , Е r , Н j , создаваемых прямолинейным кусочно-синусоидальным током в некоторой точке наблюдения с координатами r, z в цилиндрической системе координат, ось аппликат которой совпадает с линией тока и направлена в соответствии с его положительным направлением:

где, z 1 и z 2 - аппликаты начала и конца данного прямолинейного однородного отрезка ЭЛ, соответственно;

r 1 и r 2 - расстояние до точки наблюдения от начала и конца отрезка, соответственно;

I(х) - токовая функция;

х - криволинейная координата - расстояние до передатчика по фидеру;

х, и х 2 - координаты х начала и конца отрезка, соответственно.

Аналогичным образом находится поле, создаваемое током шины (равным по модулю и противоположным по фазе току экрана фидера).

3.1.2. ИЗЛУЧЕНИЕ ЭКРАНОВ КОАКСИАЛЬНЫХ ФИДЕРОВ ПЕРЕДАТЧИКОВ С НЕСИММЕТРИЧНЫМ ВЫХОДОМ

Поле, создаваемое током коаксиального фидера передатчика с несимметричным выходом рассчитывается как и в случае бикоаксиального фидера за пять этапов. Процедура расчета отличается только третьим этапом, т.е. иначе рассчитываются параметры выходной цепи ЭЛ и ее выходное напряжение.

Рассмотрим третий этап для коаксиального фидера. В данном случае обратный ток частично течет по проволочному экрану концентрического фидера, частично - по земле. Мерой удельного веса тока земли в общем обратном токе является коэффициент прозрачности проволочного экрана k п. Суммарный обратный ток перетекает на внутреннюю поверхность экрана коаксиального фидера передатчика с проволочного экрана, шины заземления и внешней своей поверхности. Последняя составляющая и есть ток ЭЛ. В эквивалентной схеме ток земли течет по параллельному соединению импедансов Z ш (вертикальный участок шины) и Z N (входной импеданс последнего N-го однородного отрезка ЭЛ, - см. рис. 1).

При расчете тока земли сначала находится коэффициент прозрачности проволочного экрана k формуле:

K п = 1 - С 12 /С 11 , (3.14)

где, С 12 - взаимная погонная емкость между центральным проводом и проволочным экраном концентрического фидера;

С 11 - собственная емкость центрального провода.

Емкости С 11 и С 12 находятся решением электростатической задачи (методом, описанным в предыдущем пункте) при потенциале центрального провода фидера 1В и при нулевых потенциалах проволочного экрана и земли: величины С 11 и С 12 при этом совпадают с абсолютными значениями погонных зарядов центрального проводника и экрана, соответственно. Затем вычисляется ток земли I з по формуле:

I з = k п I 0 , (3.15)

где, I 0 - ток центрального провода, который находится как выходной ток передатчика в предположении высокого уровня согласования антенны.

Напряжение на выходе ЭЛ u n рассчитывается как падение напряжения на параллельном соединении Z ш и Z N при протекании тока I з:

u n = I з /(1/Z ш + 1/Z N). (3.16)

В остальном, как уже отмечалось выше, расчет аналогичен случаю бикоаксиального фидера передатчика с симметричным выходом.

3.1.3. ИЗЛУЧЕНИЕ ЩЕЛЕЙ ШКАФОВ ПЕРЕДАТЧИКОВ

Щели шкафов передатчиков рассматриваются как короткие магнитные вибраторы, возбужденные кусочно-синусоидальным эквивалентным магнитным током щели с амплитудой в пучности I м. На основе принципа перестановочной двойственности уравнений Максвелла получены замкнутые выражения для?-составляющей электрического, r- и z-составляющих магнитного полей в цилиндрической системе координат, ось аппликат которой совпадает с осью вибратора, начало координат - с его центром:

, (3.19)

где, r 1 , r 0 , r 2 - расстояния до точки наблюдения от разных точек вибратора, определяемых подстрочными индексами:

Индекс «2» - начало (нижняя крайняя точка в данной системе координат);

Индекс «0» - центр (средняя точка);

Индекс «1» - конец (верхняя крайняя точка).

Для определения величины I м используется формула (3.19), при этом считается, что величина е? задана. Возможны два случая:

В ТУ на передатчики данного типа установлено требование для максимально допустимой напряженности с указанием расстояния от стенки передатчика, на котором это требование проверяется;

В ТУ на передатчики данного типа упомянутое требование установлено либо без указания расстояния, на котором оно проверяется, либо в виде ссылки на ПДУ.

В первом случае имеются все необходимые исходные данные для вычисления эквивалентного магнитного тока щели. Во втором случае предлагается, руководствуясь величинами напряженности поля, взятыми из ТУ или (при отсутствии в ТУ) из гигиенического норматива, считать, что эти значения определены на расстоянии 0,3 ... 0,7 м от стенки передатчика. Тем или иным способом определенная напряженность Еj подставляется в (3.19), в результате из этого выражения находится амплитуда эквивалентного магнитного тока в пучности I м.

3.1.4. ИЗЛУЧЕНИЕ АНТЕНН РАДИОЦЕНТРА

Расчет поля, создаваемого излучающими антеннами радиоцентров, подробно приведен в «Методических указаниях МУК 4.3.044-96. Определение уровней электромагнитного поля, границ санитарно-защитной зоны и зон ограничения застройки в местах размещения передающих средств радиовещания и радиосвязи кило-, гекто- и декаметрового диапазонов».

3.2. РАСЧЕТ ТОКОВ, НАВЕДЕННЫХ НА МЕТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ

Расчет токов, наведенных на металлические элементы, проводится следующим образом.

Задача решается как дифракционная методом интегрального уравнения в тонкопроволочном приближении (задача о рассеянии стороннего поля). Объект представляется как система «тонких» проводов - проволочная модель. Большинство металлических элементов внутри здания реально являются линейными проводниками (экраны фидеров, трубы водяного охлаждения, шины заземления и т.д.), экранированные стены и железобетонные перекрытия моделируются как сплошные металлические поверхности проволочными сетками. Для решения интегрального уравнения использован известный метод сшивания в дискретных точках при кусочно-синусоидальном базисе разложения токовой функции. В разделе подробно описаны основные вычислительные процедуры, выполняемые в рамках метода.

3.2.1. МЕТОД ИНТЕГРАЛЬНОГО УРАВНЕНИЯ В ТОНКОПРОВОЛОЧНОМ ПРИБЛИЖЕНИИ

Поля, создаваемые источниками, рассмотренными выше, имели бы место при отсутствии других металлических предметов. В данном случае электромагнитное поле будет подвержено влиянию проводящих (экранированных) стен здания, фидеров, шин заземления, труб водяного охлаждения, шкафов передатчиков и т.д. В результате действия источников на этих предметах наведутся токи, которые в свою очередь вызовут появление поля рассеяния. Результирующее поле будет суперпозицией первичного поля рассмотренных выше источников и вторичного - поля рассеяния на металлических телах, расположенных в здании. Первичное поле следует рассматривать как стороннее, при этом необходимо находить вторичный ток на экранах фидеров, который в сумме с первичным (найденным при моделировании этих источников) представляет реальную картину распределения тока с учетом взаимодействия фидеров между собой и с другими проводниками.

В качестве исходного интегрального уравнения используется уравнение Харрингтона. Его решение выполняется методом сшивания в точках при кусочно-синусоидальном базисе разложения токовой функции. В предыдущем подразделе подробно рассмотрены связанные с этим теоретические вопросы. Ниже дается описание конкретных вычислительных процедур.

3.2.2. МЕТОД СШИВАНИЯ В ТОЧКАХ ПРИ КУСОЧНО-СИНУСОИДАЛЬНОМ БАЗИСЕ

Решение задачи о рассеянии поля сторонних источников в здании (т.е. о наведенных токах) выполняется за 4 этапа:

1) построение тонкопроволочной модели;

2) построение на проводах сегментов с кусочно-синусоидальными базисными функциями;

3) расчет коэффициентов и свободных членов системы линейных алгебраических уравнений (СЛАУ) - аналога исходного интегрального уравнения;

4) решение СЛАУ, в результате чего находятся амплитуды токов сегментов в пучностях - коэффициенты при базисных функциях, которые совместно с последними полностью восстанавливают функцию, аппроксимирующую истинное распределение тока.

Проволочная модель представляет собой систему прямолинейных проводников. Она должна включать:

Все линейные проводники (фидеры, трубы водяного охлаждения и т.д.);

Шкафы передатчиков (в диапазонах НЧ и СЧ шкафы с превалирующим размером моделируются одним проводом большого радиуса, в диапазоне ВЧ - проволочной сеткой);

Экранированные стены и перекрытия здания (в том числе железобетонные).

Модель строится в основной декартовой системе, использованной при моделировании источников. Каждый прямолинейный проводник задается упорядоченной парой радиус-векторов крайних точек (порядок записи векторов определяет положительное направление тока). Линейные размеры ячеек сеток, моделирующих сплошные поверхности, не должны превышать 3,5 % длины волны, и быть, по крайней мере, вдвое меньше расстояния до ближайшего линейного проводника (например, фидера). С целью снижения объема вычислений следует варьировать густоту сетки в зависимости от расстояния до линейных проводников, шкафов передатчиков и др. В случае сложной конфигурации здания можно разделить объект на отдельные части, соединенные электрически малыми дверными проемами, и для каждой такой части отдельно решать задачу.

Система проводников модели представляет собой криволинейный контур L`. Для определения базисных функций на нем выделяются N коротких отрезков - сегментов. Каждый k-й сегмент определяется тремя точками: l` 1, k - начало, l` 0, k - средняя точка, l` 2, k - конец. Соответствующая ему k-я базисная функция задается выражениями:

b k (l`) = sinb(l` - l` 1, k)/sinbL 1 , l` 1, k ? l` ? l` 0, k , (3.20)

b k (l`) = sinb(l` 2,k - l`)/sinbL 2 , l` 0,k ? l` ? l` 2,k ,

где, L 1 = l` 0, k - l` 1, k ;

L 2 = l` 2, k - l` 0, k .

В сущности, сегмент представляет собой короткий вибратор с кусочно-синусоидальным током, причем в общем случае его плечи - отрезки и - могут не лежать на одной прямой и иметь разную длину. Соседние сегменты частично перекрываются: средняя точка k-гo сегмента l` 0, k совпадает с концом (k - 1)-гo и началом (k + 1)-гo сегментов.

Электрические контакты между проводниками (например, в узлах сетки) описываются введением специальных сегментов, плечи каждого из которых лежат на разных проводниках. При этом автоматически выполняется закон Кирхгоффа для узла цепи.

На поверхности провода на расстоянии его радиуса у средней точки каждого сегмента вводится соответствующая точка сшивания. Кривые, соединяющие точки сшивания и проходящие по поверхности проводников образуют контур L.

Токовая функция представляется в виде разложения по системе базисных функций:

, (3.22)

где, I k - неизвестные (искомые) коэффициенты - амплитуды токов сегментов в пучностях.

Величины I k находятся решением СЛАУ:

I = 1, 2, … N, (3.23)

где каждый коэффициент Z ik выражает связь между k-м и i-м сегментами и имеет смысл тангенциальной составляющей поля в точке сшивания i-гo сегмента при I k = 1 А, свободные члены Е i обусловлены действием сторонних источников. Коэффициенты Z ik вычисляются следующим образом. Поскольку плечи сегмента в общем случае могут не лежать на одной прямой, удобно вычислять поле каждого плеча отдельно, суммируя затем соответствующие тангенциальные составляющие. Поле, создаваемое одним плечом, целесообразно вычислять в виде разложения по единичным векторам 1 z и 1r цилиндрической системы координат, ось аппликат которой (OZ) совмещена с плечом, средняя точка сегмента находится в начале координат, начало (для 1-го плеча) или конец (для 2-го плеча) сегмента находится в области положительных z.

Формулы для z-й и r-й компонент поля, создаваемого в точке сшивания одним из плеч сегмента (в соответствующей цилиндрической системе) имеют вид:

(3.24)

где, r 1 - расстояние до точки наблюдения от начала (конца) сегмента, м;

r 0 - расстояние до точки наблюдения от средней точки сегмента, м;

b = 2p/l - волновое число;

l - длина волны, м;

l - длина рассматриваемого плеча, м;

z и r - цилиндрические координаты точки наблюдения (соответственно аппликата и проекция радиус-вектора точки на плоскость z = 0, м).

Знак «+» в (3.24, 3.25) соответствует 1-му плечу сегмента, знак «-» -2-му.

Пусть z- и r-компоненты поля по формулам (3.24, 3.25) рассчитаны для обоих плеч k-гoсегмента, т.е. получены 4 числа. Обозначим их E m, k , m = 1, 2, 3, 4. Каждой m-й компоненте в исходной основной системе координат соответствует единичный вектор 1` m, k . С учетом этих обозначений формула для Z ik может быть записана в виде:

, (3.26)

где, 1 i - единичный вектор, тангенциальный к L в i-й точке сшивания.

Формула для свободных членов Е i имеет вид:

Е i = j(1 i , E ст (v i)), (3.27)

где, E ст (v i) - стороннее поле, создаваемое всеми источниками рассмотренными выше;

v i - радиус-вектор i-й точки сшивания в исходной основной системе координат.

После вычисления коэффициентов и свободных членов составляется и решается СЛАУ (3.23).

Решение СЛАУ наиболее целесообразно выполнять методом оптимального исключения, требующим сохранения в памяти ЭВМ только верхней треугольной матрицы коэффициентов СЛАУ (включая главную диагональ) и столбца свободных членов.

3.3. РАСЧЕТ УРОВНЕЙ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

После решения СЛАУ (3.23) имеем систему токов:

Сторонние на экранах фидеров и эквивалентные магнитные токи щелей шкафов передатчиков;

Наведенные на металлические тела, в том числе на экраны фидеров, обтекаемые сторонними токами (полный ток экранов фидеров будет суммой сторонних и наведенных токов).

Кроме того (в случае неэкранированного здания) имеются сторонние поля создаваемые антеннам радиоцентра.

Полное поле в некоторой точке наблюдения будет суперпозицией стороннего поля антенн, поля сторонних токов (экраны фидеров, щели шкафов) и поля наведенных токов.

Электрическое поле излучения антенн находится методом, описанным выше. Для вычисления магнитного поля можно, учитывая удаленность антенн, использовать приближенный подход, основанный на предположении о волновом характере поля. При этом для антенны вертикальной поляризации в цилиндрической системе (ось аппликат вертикальна и совпадает с антенной) магнитное поле имеет только j-составляющую:

Н j = E z /(120p), (3.28)

для антенны горизонтальной поляризации в такой же цилиндрической системе надо найти Е j , тогда магнитное поле будет иметь только z-составляющую:

H z = Ej/(120p). (3.29)

Поле, создаваемое сторонними токами экранов фидеров, вычисляется по формулам (3.11 - 3.13), как это было описано выше; поле излучения из щелей шкафов передатчиков - по формулам (3.17 - 3.19).

Поле, создаваемое наведенными токами является суперпозицией полей отдельных сегментов. Для вычисления электрического поля необходимо методом, описанным выше, рассчитать коэффициенты СЛАУ для точки наблюдения, рассматривая ее как точку сшивания, причем контур L поочередно ориентировать вдоль базисных векторов основной декартовой системы. Тогда поле одного сегмента (пусть это будет i-й сегмент) будет произведением тока в пучности I i на этот коэффициент.

Магнитное поле сегментов вычисляется как суперпозиция полей отдельных их плеч следующим образом. Для каждого плеча каждого сегмента строится цилиндрическая система координат так, что ось аппликат (OZ) совпадает с плечом, центральная точка сегмента находится в начале координат, его крайняя точка - в области положительных z. В такой системе магнитное поле будет иметь только j-составляющую, которая вычисляется по формуле:

где, I 0 - ток в пучности, т.е. коэффициент I i для i-гoсегмента, найденный в результате решения СЛАУ;

r 1 и r 0 - расстояния до точки наблюдения от крайней и средней точки сегмента, соответственно;

l - длина плеча;

z и r - цилиндрические координаты точки наблюдения. После вычисления Н j для некоторого плеча, находятся проекции вектора магнитного поля на оси основной декартовой системы. Данная процедура выполняется для всех плеч, полное магнитное поле наведенных токов находится как сумма соответствующих проекций.

4. МЕТОДИКА ИЗМЕРЕНИЯ УРОВНЕЙ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Инструментальный контроль уровней ЭМП проводится с целью определения фактического состояния электромагнитной обстановки на рабочих местах обслуживающего персонала и служит средством оценки достоверности результатов расчета. Измерения проводятся:

На этапе предупредительного санитарного надзора - при приемке радиотехнического объекта (РТО) в эксплуатацию;

На этапе текущего санитарного надзора - при изменении технических характеристик или режимов работы (мощности излучения, антенно-фидерного тракта, направлений излучения и т.п.);

При изменении ситуационных условий размещения технических средств станций (изменение расположения антенн, фидеров, высот их установки, азимута или угла места максимального излучения антенн, изменения расположения передатчиков);

После проведения защитных мероприятий, направленных на снижение уровней ЭМП;

В порядке плановых контрольных измерений (не реже одного раза в год).

При подготовке к проведению измерений проводятся следующие работы:

Согласование с заинтересованными предприятиями и организациями цели, времени и условий проведения измерений;

Определение необходимости использования средств индивидуальной защиты;

Подготовка необходимой измерительной аппаратуры. Настоящая методика распространяется на все рабочие места персонала радиопредприятий, излучающих энергию НЧ, СЧ и ВЧ диапазонов.

4.1. ОПЕРАЦИИ ИЗМЕРЕНИЙ

При проведении измерений должны выполняться следующие операции:

Измерение напряженности электрической составляющей электромагнитного поля,

Измерение напряженности магнитной составляющей электромагнитного поля,

Пересчет измеренных уровней электрической и магнитной составляющих в значения энергетической нагрузки.

4.2. СРЕДСТВА ИЗМЕРЕНИЯ

При проведении измерений должны применяться следующие образцовые и вспомогательные средства:

Селективный микровольтметр SMV-11 (SMV-6);

Специальная антенна для измерения электрической составляющей ЭМП на частотах 0,06 - 30 МГц («ОРТ»);

Специальная антенна для измерения магнитной составляющей ЭМП на частотах 0,06 - 30 МГц.

Разрешается, кроме указанных выше, применять другие измерительные селективные (WMS-4, ESH2, ESH 3, ESHS 10) и широкополосные приборы (NFM-1, ПЗ-15 - ПЗ-22) с погрешностями не хуже, чем у приборов, перечисленных выше.

4.3. УСЛОВИЯ ИЗМЕРЕНИЙ

При проведении измерений должны соблюдаться следующие условия:

Температура окружающей среды 293 ± 5 К° (20 ± 5 С°);

Атмосферное давление 100 ± 4 кПа (750 ± 30 мм. рт. ст.);

Относительная влажность воздуха 65 ± 15 %;

Напряжение питания сети частотой 50 Гц ± 1 % и содержание гармоник до 5 % должно быть 220 В ± 2 %.

Измерения на рабочих местах проводят на расстояниях от источников ЭМП, соответствующих нахождению тела работающих, на нескольких уровнях от поверхности пола или земли с определением максимального значения напряженности ЭМП для каждого рабочего места.

Минимальное расстояние между измерительной антенной и металлическими поверхностями не должно быть менее четырех максимальных размеров антенны, при размерах антенны не более 0,25 м.

4.4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

4.4.1. Измерение уровня напряженности электрической составляющей ЭМН в диапазоне частот 0,06 - 30 МГц.

4.4.1.1. Уровень напряженности поля определяют на каждой рабочей частоте радиопередающего устройства.

4.4.1.2. Включают селективный микровольтметр и прогревают его в течении времени, указанном в инструкции по эксплуатации.

4.4.1.3. Специальную антенну для измерения электрической составляющей ЭМП располагают в выбранной плоскости XOY по оси X в соответствующей точке измерения.

4.4.1.4. Включают (если оно не работает) радиопередающее устройство в режим непрерывного излучения.

4.4.1.5. Устанавливают и калибруют частоту прибора SMV-11.

4.4.1.6. Настраивают прибор на измеряемый сигнал.

4.4.1.7. Проводят калибровку усиления.

4.4.1.8. Отсчитывают измеренное значение напряжения по сумме ослабления на делителях и по показанию индикаторного прибора в дБ.

4.4.1.9. Определяют напряженность поля по сумме измеренного значения напряжения и калибровочного коэффициента специальной измерительной антенны на данной частоте в дБ.

4.4.1.10. Производят пересчет значения напряженности поля Е, выраженной в дБ относительно 1 мкВ, в В/м по формуле

E x (В/м) = 10 0,05Е (дБ) *10 -6 .

4.4.1.11. Ориентируют измерительную антенну по оси Y, повторяют действия по пп. 4.4.1.7 - 4.4.1.10, определяя Е у .

4.4.1.12. Устанавливают измерительную антенну ортогонально к плоскости XOY, повторяют действия по пп. 4.4.1.7 - 4.4.1.10, определяя E z .

4.4.1.13. Повторяют измерения составляющих Е х, Е у, E z еще два раза. Выбирают наибольшие из измеренных значений.

4.4.1.14. Повторяют действия по пп. 4.4.1.7 - 4.4.1.13, поместив антенну в другую точку пространства на рабочем месте обслуживающего персонала (на другую высоту). Выбирают наибольшие из измеренных значений.

4.4.1.15. Повторяют действие по п. 4.4.1.14 так, чтобы на одном рабочем месте были проведены измерения не менее, чем в трех точках. Выбирают наибольшие из измеренных значений.

4.4.1.16. Производят пересчет измеренных значений в значение суммарной составляющей по формуле

.

4.4.2. Измерение уровня напряженности магнитной составляющей ЭМП в диапазоне частот 0,06 - 30 МГц.

4.4.2.1. Измерения проводят согласно п. 4.4.1, заменив антенну для измерения электрической составляющей на специальную антенну для измерения магнитной составляющей.

4.4.2.2. Производят пересчет измеренных значений в значение суммарной составляющей по формуле

.

4.4.3. Проводят измерения электрической и магнитной составляющих ЭМП, создаваемого другими радиопередающими устройствами на их рабочих частотах согласно пп. 4.4.1 - 4.4.2.

Результаты измерений оформляются протоколом.

ИЗМЕРЕНИЕ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО И МАГНИТНОГО ПОЛЕЙ С ПОМОЩЬЮ ПРИБОРА ПЗ-50В

Измеритель ПЗ-50В предназначен для измерения среднеквадратического значения напряженности электрического и магнитного полей (ЭП и МП) промышленной частоты 50 Гц.

Предел измерений:

ЭП 0,01 - 100 кВ/м;

МП 0,1 - 1800 А/м.

Установление времени рабочего режима: 3 мин.

Подготовка прибора к проведению измерений: измерить температуру, относительную влажность воздуха, атмосферное давление. Работа с прибором запрещается при значениях температуры, влажности, атмосферного давления, выходящих за пределы рабочих условий эксплуатации (рабочие условия: температура от +5 до +40°С, относительная влажность воздуха до 90%, барометрическое давление 537-800 мм.рт.ст.). Проверить наличие и внешнее состояние элементов питания.

Установить в исходное положение переключатели:

Переключатель «ВЫКЛ/КОНТ/ИЗМ» в положение ВЫКЛ.

Переключатель «x0,l/xl/xl0» - в положение xl.

Переключатель «2/20/200» - в положение 200.

Порядок работы с прибором

  • 1. Подключить штатный кабель КЗ-50 к разъему на хвостовой части антенны-преобразователя (АП) типа ЕЗ-50 (для ЭП) или НЗ-50 (для МП).
  • 2. Накрутить на АП пластмассовую ручку.
  • 3. Подключить разъем на свободном конце кабеля к ответной части на индикаторе УОЗ-50.
  • 4. Установить переключатель «ВЫКЛ/КОНТ/ИЗМ» в положение КОНТ. При этом на индикаторе УОЗ-50 появится число, соответствующее напряжению питания прибора (от минус 100,0 до плюс 100,0). При отсутствии показаний на индикаторе или если контрольное число меньше минус 100,0 следует заменить элементы питания.
  • 5. Установить переключатель «ВЫКЛ/КОНТ7ИЗМ» положение ИЗМ.
  • 6. Поместить антенну - преобразователь в измеряемое поле, выждать 3 минуты.
  • 7. Измерение провести раздельно для трех осей х, у, z. При измерении по каждой из осей вращать антенну-преобразователь, добиваясь максимального показания на индикаторе и производя при этом выбор пределов измерения при помощи переключателей «хО,1/х1/х1О» и «2/20/200» так, чтобы показания измерителя находились в диапазоне от 0,05 до 0,75. Предел измерения равен произведению значений переключателей «x0,l/xl/xl0» и «2/20/200» (в кВ/м или А/м).
  • 1. Итоговое среднеквадратическое значение вектора напряженности поля определить в соответствии с формулой: E=V(E x) 2 +(E y) 2 +(E a) 2 или H=V(H x) 2 +(H y) 2 +(H,) 2 .
  • 2. После окончания работы с измерителем необходимо выключить питание, переведя в положение ВЫКЛ переключатель «ВЫКЛ/КОНТ/ИЗМ», отсоединить составные части прибора друг от друга и уложить в футляр.

ИЗМЕРЕНИЕ ЭМП ПРИБОРОМ В&Е-МЕТР

Измеритель параметров электрического и магнитного полей В&Е-метр предназначен для экспрессных измерений среднеквадратических значений электрической и магнитной составляющих электромагнитного поля в жилых и рабочих зонах, в том числе и от ВДТ.

Условия эксплуатации измерителя: климатические условия: температура от +5 до +40°С, влажность до 86% при 25°С.

Технические характеристики измерителя: полосы частот, в которых измеряется среднеквадратическое значение напряженности электрического тока и плотности магнитного потока:

¦ полоса 1 - от 5 Гц до 2000 Гц;

¦ полоса 2 - от 2 кГц до 400 кГц.

Диапазон среднеквадратических значений напряженности электрического поля:

в полосе 1 - от 5 В/м до 500 В/м;

в полосе 2 - от 0,5 В/м до 50 В/м.

Диапазон среднеквадратических значений плотности магнитного потока:

в полосе 1 - от 0,05 мкТл до 5 мкТл;

в полосе 2 - от 5 нТл до 500 нТл.

Питание прибора осуществляется от аккумуляторной батареи. Подготовка прибора к проведению измерений

Убедиться в рабочем состоянии аккумуляторной батареи (после включения прибора кнопкой «ВКЛ» индикаторный светодиод не светится или светится слабо). Для восстановления заряда аккумуляторной батареи прибор следует подключить к зарядному устройству, а зарядное устройство - к сети переменного тока (на срок не менее 5 часов).

Расположить прибор на расстоянии около 2 м от предполагаемых источников излучения, включить прибор и выждать 5 мин для установления рабочего режима.

Порядок работы

Переключателем «ВИД ИЗМЕРЕНИЙ» включить режим измерения электрического («Е») или магнитного («В») поля. Выждать 1-2 минуты. Взявшись за приборную ручку, разместить измеритель передней торцевой частью в точке измерения и считать показания индикатора. Результат измерения относится к точке, в которой находится геометрический центр передней торцевой панели прибора. Измерения проводятся в каждой из трех ортогональных осей х, у, г. В протоколе указывается наибольшее значение.

Выключить прибор, нажав на кнопку «ВКЛ».

Результаты измерений параметров электрического поля в диапазонах 1 и 2 выдаются в единицах В/м, результаты измерений параметров магнитного поля в диапазоне 1 выдаются в единицах мкТл (микротесла), в диапазоне 2 - в единицах нТл (нанотесла). При пересчетах следует иметь в виду, что 1 мкТл=1000 нТл.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Кафедра: охраны труда, промышленной безопасности и экологии

Дисциплина: Мониторинг безопасности

Методы и системы измерения электромагнитных полей

Введение

Введение

Современное состояние биосферы вызывает тревогу у всего прогрессивного человечества по причине ее значительного загрязнения. Жизнь современного общества находится под влиянием электромагнитных полей (ЭМП). Не в последнюю очередь это связано с тем, что вторая половина 20-го столетия ознаменовалась бурным развитием радиоэлектроники, систем беспроводной связи, электроэнергетики. Создаются мощные радиопередающие устройства, системы радиосвязи и телевидения, антенны которых преднамеренно излучают в пространство электромагнитную энергию. Биосфера наполнено ЭМП технического происхождения. Интенсивность ЭМП и другие показатели электрического и магнитного полей в большинстве случаев увеличились многократно. В настоящее время это стало крупной проблемой в области электромагнитной безопасности человека.

Каждый день локальным и фоновым электромагнитным энергетическим нагрузкам подвергаются миллионы людей. Места отдыха детей оснащены электрическими и электронными играми, компьютерами. Компьютеризуется учебный процесс в начальных, средних и высших учебных заведениях. Рабочие места работников промышленности, науки и вооружения, специалистов управленческих и диспетчерских служб, служб испытаний и спасения, летчиков и водителей электротранспорта насыщены электрическими приборами, электрокабелями, электронными средствами оргтехники, пультами управления и средствами связи. Все эти источники ЭМП расположены в зонах нахождения человека. Значительная часть населения планеты систематически облучается ЭМП от сотовых телефонов, антенны которых излучают электромагнитную энергию в области головы.

Действие на человека ЭМП не проходит бесследно. В медицине имеются неоспоримые доказательства негативных последствий (включая отдаленные последствия), вызванных длительными воздействиями как мощных, так и малоинтенсивных ЭМП. Эти поля воздействуют на нервную, эндокринную и сердечнососудистую системы, нарушают обмен веществ и морфологический состав крови, вызывают изменения репродуктивной функции и т. д.

Человек «беззащитен» перед ЭМП, «коварство» которых состоит в том, что их действие не ощущается органами чувств. Особенно это относится к магнитным полям (МП), для которых все биологические объекты «прозрачны». Эффективным способом защиты человека является определение предельно допустимых значений соответствующих основных характеристик вкупе с контролем ключевых параметров ЭМП, что в итоге сформирует безопасные условия для жизни.

1. Определение и виды электромагнитных полей

Электромагнитное поле (ЭМП) - совокупность изменяющихся во времени электрического поля и магнитного поля. Поля связаны между собой непрерывным взаимным превращением, которое происходит в процессе движения ЭМП.

Геомагнитное поле (ГМП) - магнитное поле Земли. Это поле имеет две составляющие - постоянную и переменную. Постоянное магнитное поле возникает в недрах планеты и с течением времени практически не меняется. Его величина зависит только от географической точки на планете (близость к магнитным полюсам, наличие магнитных аномалий и пр.). Причины переменного магнитного поля, а значения его не значительны. Геомагнитное поле внутри зданий, сооружений, кабин транспорта ослабляется ограждающими конструкциями. Кроме того, эти конструкции сами могут являться источниками постоянного магнитного поля. Сумма ослабленного геомагнитного поля в помещении и полей от других источников называется гипогеомагнитным полем (ГГМП).

Электрическое поле (ЭП) - составляющая электромагнитного поля, которая окружает электрические заряды. ЭП создается как неподвижными заряженными частицами (телами), так и заряженными частицами, двигающимися в пространстве со скоростями, значительно меньшими, чем скорость ЭМП. ЭП неподвижных электрических зарядов называют электростатическим полем. Значение силы пропорционально электрическому заряду частицы и не зависит от ее скорости. Отличительная особенность ЭП состоит в том, что только оно оказывает силовое воздействие на неподвижные заряженные частицы.

Статические электрические поля (СЭП) - представляют собой поля неподвижных электрических зарядов, либо стационарные электрические поля постоянного тока. Они могут существовать в виде собственно ЭСП (поля неподвижных зарядов) или стационарных электрических полей (электрические поля постоянного тока).

Магнитное поле (МП) - составляющая электромагнитного поля, окружающая движущиеся заряды и намагниченные тела. МП не существует без движущихся зарядов и намагниченных тел, а они, в свою очередь, создают вокруг себя МП, которое обладает массой, энергией и импульсом.

Постоянные магнитные поля (ПМП) Источниками ПМП на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и другие электротехнические устройства).

МП неподвижных намагниченных тел и проводников с постоянным током называют магнитостатическим или постоянным магнитным полем.

Электрическое поле, а также магнитное поле и вещество (включая живую материю) проницаемы друг для друга. Они могут занимать один и тот же объем.

Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле - вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем (заряженной частицей). Однако при ускоренном движении носителей электромагнитное поле существует в окружающей среде независимо в виде электромагнитной волны, не исчезая с устранением носителя (например, радиоволны не исчезают при исчезновении тока в излучающей их антенне). Отличие ЭМП от других видов полей состоит в том, что только ЭМП оказывает давление на поглощающую поверхность. Основными физическими параметрами, характеризующими ПМП, являются: напряженность поля (Н), магнитный поток (Ф) и магнитная индукция(В). Единицами измерения напряженности магнитного поля является ампер на метр (А/м), магнитного потока - вебер (Вб), магнитной индукции (или плотности магнитного потока) - тесла (Тл)

Электромагнитным полями радиочастот (ЭМП РЧ) называют поля, находящиеся в диапазоне 10 кГц -300 ГГц. Различные диапазоны радиоволн объединяет общая физическая природа, но они существенно различаются по заключенной в них энергии, характеру распространения, поглощения, отражения, а вследствие этого - по действию на среду, в том числе и на человека. Чем короче длина волны и больше частота колебаний, тем больше энергии несет в себе квант.

Электромагнитное поле (ЭМП) радиочастот характеризуется рядом свойств (способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом), благодаря которым ЭМП широко используются в различных отраслях народного хозяйства: для передачи информации (радиовещание, радиотелефонная связь, телевидение, радиолокация, радиометеорология и др.), в промышленности, науке, технике, медицине. Электромагнитные волны диапазона низких, средних, высоких и очень высоких частот применяются для термообработки металлов, полупроводниковых материалов и диэлектриков (поверхностный нагрев металла, закалка и отпуск, напайка твердых сплавов на режущий инструмент, пайка, плавка металлов и полупроводников, сварка, сушка древесины и др. Для индукционного нагрева наиболее широко используются ЭМП частотой 60-74, 440 и 880 кГц. Индукционный нагрев осуществляется в основном магнитной составляющей ЭМП за счет вихревых токов, наводимых в материалах при воздействии на них ЭМП.

2. Основные источники электромагнитных полей

Источниками электромагнитных полей являются:

Линии электропередач (ЛЭП);

Интенсивность электрических полей ЛЭП зависит от электрического напряжения. Например, под ЛЭП с напряжением 1 500 кВ напряженность у поверхности земли в хорошую погоду составляет от 12 до 25 кВ/м. При дожде и изморози напряженность ЭП может возрастать до 50 кВ/м.

Токи проводов ЛЭП создают также магнитные поля. Наибольших значений индукция магнитных полей достигает в середине пролета между опорами. В поперечном сечении ЛЭП индукции уменьшаются по мере удаления от проводов. Например, ЛЭП с напряжением 500 кВ при токе в фазе 1 кА создает на уровне земли индукции от 10 до 15 мкТл.

Радиостанции и радиоаппаратура;

Различные радиоэлектронные средства создают ЭМП в широком диапазоне частот и с различной модуляцией. Наиболее распространенными источниками ЭМП, вносящими существенный вклад в формирование электромагнитного фона как производственной, так и окружающей среды, являются центры радиовещания и телевидения.

Радиолокационные станции;

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа и излучают узконаправленный радиолуч. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Основными источниками ЭМП в радиолокаторах являются передающие устройства и антенно-фидерный тракт. На антенных площадках значения плотности потока энергии составляют от 500 до 1500 мкВт/см2, в других местах технической территории - соответственно от 30 до 600 мкВт/см2. Причем радиус санитарно-защитной зоны для обзорного радиолокатора может достигать 4 км при отрицательном угле наклона зеркала.

ЭВМ и средства отображения информации;

Основными источниками электромагнитных полей в ЭВМ являются: электросетевое питание (частотой 50 Гц) мониторов, системных блоков, периферийных устройств; источники бесперебойного питания (частотой 50 Гц); система кадровой развертки (от 5 Гц до 2 кГц); система строчной развертки (от 2 до 14 кГц); блок модуляции луча электроннолучевой трубки (от 5 до 10 МГц). Также у мониторов с электроннолучевой трубкой и большим экраном (19, 20 дюймов) за счет высокого напряжения создается значительное рентгеновское излучение, что должно рассматриваться как фактор риска для здоровья пользователей.

Электропроводка;

ЭМП в жилых и производственных помещениях формируются как за счет внешних полей, создаваемых линиями электропередачи (воздушными, кабельными), трансформаторами, распределительными электрощитами и другими электротехническими устройствами, так и за счет внутренних источников, таких как бытовая и промышленная электротехника, осветительные и электронагревательные устройства, различные типы проводки электропитания. Повышенные уровни электрических полей наблюдаются только в непосредственной близости от этого оборудования.

Источниками магнитных полей могут быть: токи электропроводки, блуждающие токи промышленной частоты, обусловленные несимметрией загрузки фаз (наличием большого тока в нулевом проводе) и протекающие по сетям водо- и теплоснабжения и канализации; токи силовых кабелей, встроенных трансформаторных подстанций и кабельных трасс.

Электротранспорт;

Электромагнитная среда в традиционных городских видах транспорта характеризуется неоднозначным распределением значений магнитных полей как в рабочих зонах, так и в салонах вагонов. Как показывают измерения индукции постоянного и переменного магнитных полей, диапазон регистрируемых значений составляет от 0,2 до 1200 мкТл. Так, в кабинах водителей трамваев индукция постоянного магнитного поля составляет от 10 до 200 мкТл, в салонах от 10 до 400 мкТл. Индукция магнитного поля крайне низкой частоты при движении до 200 мкТл, а при разгоне и торможении до 400 мкТл.

Измерения магнитных полей в электротранспорте указывают на наличие различных уровней индукции, особенно в биологически важных диапазонах ультранизких частот (частота составляет от 0,001 до 10 Гц) и крайне низких частот (частота составляет от 10 до 1000 Гц). Магнитные поля таких диапазонов, источником которых является электротранспорт, могут представлять опасность не только для работников этого вида транспорта, но и для населения.

Мобильная связь (приборы, ретрансляторы)

Мобильная связь работает на частотах от 400 МГц до 2000 МГц. Источниками ЭМП радиочастотного диапазона являются и базовые станции, и радиорелейные линии связи, и подвижные станции. У подвижных станций наиболее интенсивные ЭМП регистрируются в непосредственной близости от радиотелефона (на расстоянии до 5 см).

Характер распределения ЭМП в пространстве, окружающем телефон, значительно изменяется в присутствии абонента (при разговоре абонента по телефону). Голова человека при этом поглощает от 10,8 до 98 % энергии, излучаемой модулированными сигналами различных несущих частот.

3. Воздействие ЭМП на человека

Взаимодействие внешних ЭМП с биологическими объектами происходит путем наведения внутренних полей и электрических токов, величина и распределение которых в теле человека зависит от целого ряда параметров, таких как размер, форма, анатомическое строение тела, электрические и магнитные свойства тканей (диэлектрическая и магнитная проницаемости и удельная проводимость), ориентация тела относительно векторов электрического и магнитного полей, а также от характеристик ЭМП (частота, интенсивность, модуляция, поляризация и др.).

Биологическое действие ослабленного геомагнитного поля (ГМП).

Результаты обследования работающих в экранированных помещениях, проведенных ИБФ МЗ и НИИ МТ РАМН, свидетельствуют о развитии у них ряда функциональных изменений в ведущих системах организма. Со стороны центральной нервной системы выявлены признаки дисбаланса основных нервных процессов в виде преобладания торможения, удлинение времени реакции на появляющийся объект в режиме непрерывного аналогового слежения, снижение критической частоты слияния световых мельканий.

Нарушения механизмов регуляции вегетативной нервной системы проявляются в развитии функциональных изменений со стороны сердечнососудистой системы в виде лабильности пульса и артериального давления.

Отмечен рост заболеваемости с ВУТ у лиц, длительное время работающих в экранированных сооружениях. При этом показано, что у обследованных частота заболеваний, сопровождающих синдром иммунологической недостаточности, существенно превышает таковую среди практически здоровых людей.

Таким образом, приведенные данные свидетельствуют о гигиенической значимости гипогеомагнитных условий и необходимости их соответствующей регламентации.

Биологическое действие электростатических полей (ЭСП).

ЭСП - фактор, обладающий сравнительно низкой биологической активностью. Кровь устойчива к воздействию ЭСП. Следует отметить, что механизмы влияния ЭСП и ответных реакций организма остаются неясными и требуют дальнейшего изучения.

Биологическое действие ПМП.

Живые организмы весьма чувствительны к воздействию ПМП. Принято считать, что наиболее чувствительными к воздействию ПМП являются системы, выполняющие регуляторные функции (нервная, сердечнососудистая, нейроэндокринная и др.)

Эксперты ВОЗ на основании совокупности имеющихся данных пришли к заключению, что уровни ПМП до 2 Тл не оказывают существенного влияния на основные показатели функционального состояния организма животных.

Отечественными исследователями описаны изменения в состоянии здоровья у лиц, работающих с источниками ПМП. Наиболее часто они проявляются в форме вегетодистоний, астеновегетативного и периферического вазовегетативного синдромов или их сочетания.

Биологическое действие ЭМП ПЧ.

Зависимость биоэффектов от плотности наведенных ЭП и МП ПЧ положена в основу разработанных по заданию ВОЗ Международных временных рекомендаций по ПДУ ЭП и МП ПЧ 50/60 Гц (ICNIRP, 1990). Эта зависимость может быть представлена следующим образом:

Биологическое действие ЭМП РЧ.

Организм животных и человека весьма чувствителен к воздействию ЭМП РЧ. В целом же биологическое действие ЭМП, выявляемое на молекулярном, клеточном, системном и популяционном уровнях, феноменологически можно объяснить несколькими био-физическими эффектами:

индуцированием электрических потенциалов в системе кровообращения;

стимулированием выработки магнитофосфена импульсами

магнитного поля в ОНЧ - СВЧ диапазонах, амплитудой от долей до десятков мТл;

инициированием переменными полями широкого спектра клеточных и тканевых изменений;

Варианты воздействия ЭМП на человека разнообразны: непрерывное и прерывистое, общее и местное, комбинированное от нескольких источников и сочетанное с другими неблагоприятными факторами производственной среды и т.д. Сочетание вышеперечисленных параметров ЭМП может давать существенно различающиеся последствия для реакции облучаемого организма человека.

4. Гигиеническое нормирование ЭМП

Нормирование гипогеомагнитного поля.

В целях сохранения здоровья и работоспособности персонала применяется гигиенический норматив «Временные допустимые уровни (ВДУ) ослабления интенсивности геомагнитного поля на рабочих местах», который включен в СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях», по которому основными нормируемыми параметрами геомагнитного поля являются его интенсивность и коэффициент ослабления. Интенсивность геомагнитного поля оценивают в единицах напряженности магнитного поля (Н, А/м) или в единицах магнитной индукции (В, Тл), которые связаны между собой следующим соотношением: Интенсивность ГМП на открытом пространстве, выраженная в величинах напряженности ГМП (Hq), характеризует собой фоновое значение напряженности ГМП, характерное для данной конкретной местности. Напряженность постоянного ГМП на территории Российской Федерации на высоте 1,2-1,7 м от поверхности Земли может изменяться от 36 А/м до 50 А/м (от 45 мкТл до 62 мкТл), достигая максимальных значений в районах высоких широт и аномалий. Величина напряженности ГМП на широте Москвы составляет около 40 А/м (50 мкТл). В соответствии с гигиеническим нормативом «Временные допустимые уровни (ВДУ) ослабления интенсивности геомагнитного поля на рабочих местах» допустимые уровни ослабления интенсивности геомагнитного поля на рабочих местах персонала внутри объекта, помещения, технического средства в течение рабочей смены не должны превышать 2 раз по сравнению с его интенсивностью в открытом пространстве на территории, прилегающей к месту их расположения.

Нормирование ЭСП. В соответствии с СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» и ГОСТ 12.1.045-84. «ССБТ. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» предельно допустимая величина напряженности ЭСП на рабочих местах устанавливается в зависимости от времени воздействия в течение рабочего дня, и согласно данного норматива не должна превышать следующих величин:

при воздействии до 1 часа - 60 кВ/м;

при воздействии 2 часов - 42,5 кВ/м;

при воздействии 4 часов - 30,0 кВ/м;

при воздействии 9 часов - 20,0 кВ/м.

Кроме того, согласно п. 2.2 Приказа Главного государственного санитарного врача СССР от 12.11.1991 N 6032-91 «Допустимые уровни напряженности электростатических полей и плотности ионного тока для персонала подстанций и ВЛ постоянного тока ультравысокого напряжения» Предельно допустимый уровень напряженности ЭСП (Епр) устанавливается 60 кВ/м в течение часа. Пребывание в ЭСП напряженностью более 60 кВ/м без средств защиты не допускается (см. ГОСТ 12.1.045-84).

Работа на ПВЭМ под воздействием ЭСП согласно Таблицы 1 Приложения № 2 СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» временно допустимый уровень напряженности электростатического поля не должен превышать 15 кВ/м.

Нормирование ПМП.

Нормирование и гигиеническая оценка постоянного магнитного поля (ПМП) осуществляется по его уровню дифференцировано в зависимости от времени воздействия на работника в течение смены с учетом условий общего (на все тело) или локального (кисти рук, предплечье) облучений.

Уровни ПМП оценивают в единицах напряженности магнитного поля (Н) в кА/м или в единицах магнитной индукции (В) м/Тл согласно Таблицы 1 СанПиН 2.2.4.1191-03:

При необходимости пребывания персонала в зонах с различной напряженностью (индукцией) ПМП общее время выполнения работ в этих зонах не должно превышать ПДУ для зоны с максимальной напряженностью.

Нормирование ЭМП ПЧ

Гигиеническая регламентация осуществляется раздельно для электрического (ЭП) и магнитного (МП) полей, при этом нормируемым параметрам ЭП является напряженность, которая оценивается в киловольтах на метр (кВ/м), а для МП - магнитная индукция или напряженность магнитного поля, измеряемые соответственно в миллиили микротеслах (мТл, мкТл) и амперах или килоамперах на метр (А/м, кА/м).

При этом гигиеническое нормирование МП ПЧ на рабочих местах регламентируется СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» в зависимости от времени пребывания в электромагнитном поле и с учетом локального и общего воздействия:

В интервале интенсивностей 5-20 кВ/м допустимое время пребывания определяется по формуле:

Т - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч;

Е - напряженность воздействующего ЭП в контролируемой зоне.

Согласно этой формулы предельно допустимый уровень (ПДУ) ЭП ПЧ для полного рабочего дня составляет 5 кВ/м, а максимальный ПДУ для воздействий не более 10 мин - 25 кВ/м, при этом пребывание при таком уровне напряженности без применения средств защиты не допускается.

Учитываемое различие в уровнях напряженности ЭП контролируемых зон составляет 1 кВ/м. Допустимое время пребывания в ЭП может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время необходимо находиться вне зоны влияния ЭП или применять средства защиты.

Временные допустимые уровни ЭМП, создаваемых ПЭВМ на рабочих местах определяются согласно Таблице 1 Приложения 2 к СанПиН 2.2.2/2.4.1340-03:

5. Принципы измерения параметров электрических и магнитных полей

Принципы измерения напряженности электрического поля.

В основе метода измерения параметров электрического поля лежит свойство проводящего тела, помещенного в электрическое поле. Если в однородное электрическое поле поместить два проводящих тела, то возникает разность потенциалов, равная разности потенциалов внешнего электрического поля между центрами электрических зарядов тел. Эта разность потенциалов связана с модулем напряженности внешнего электрического поля.

При измерении напряженности переменного электрического поля в качестве первичного преобразователя используется дипольная антенна, размеры которой малы по сравнению с длиной волны. В однородном электрическом поле между элементами дипольной антенны (цилиндрами, конусами и т.д.) возникает переменное напряжение, мгновенное значение которого будет пропорционально проекции мгновенного значения напряженности электрического поля на ось дипольной антенны. Измерение среднеквадратического значения этого напряжения даст величину, пропорциональную среднему квадратическому значению проекции напряженности электрического поля на ось дипольной антенны. То есть речь идет об электрическом поле, которое существовало в пространстве до внесения в него дипольной антенны. Таким образом, для измерения среднеквадратического значения напряженности переменного электрического поля необходимы дипольная антенна и средний квадратический вольтметр.

Принципы измерения напряженности (индукции) магнитного поля. Для измерения напряженности постоянного и низкочастотного магнитных полей обычно используются преобразователи, основанные на эффекте Холла, который относится к гальваномагнитным явлениям, возникающим при помещении проводника или полупроводника с током в магнитное поле. К этим явлениям относятся: возникновение разности потенциалов (ЭДС), изменение электрического сопротивления проводника, возникновение разности температур.

Эффект Холла проявляется, если к паре противоположных граней прямоугольной пластины из полупроводника приложить напряжение, вызывающее постоянный ток. Под действием вектора индукции, перпендикулярного пластине, на движущиеся носители заряда будет действовать сила, перпендикулярная вектору плотности постоянного тока. Следствием этого будет возникновение разности потенциалов между другой парой граней пластины. Эту разность потенциалов называют ЭДС Холла. Ее величина пропорциональна составляющей вектора магнитной индукции, перпендикулярной пластине, толщине пластины и постоянной Холла, которая является характеристикой полупроводника. Зная коэффициент пропорциональности между ЭДС и магнитной индукцией, измеряя ЭДС, определяют значение магнитной индукции.

Для измерения среднего квадратического значения напряженности переменного магнитного поля в качестве первичного преобразователя используется рамочная антенна, размеры которой малы по сравнению с длиной волны. Под действием переменного магнитного поля на выходе рамочной антенны возникает переменное напряжение, мгновенное значение которого пропорционально проекции мгновенного значения напряженности магнитного поля на ось, перпендикулярную плоскости рамочной антенны и проходящую через ее центр. Измерение среднего квадратического значения этого напряжения дает величину, пропорциональную среднему квадратическому значению проекции напряженности магнитного поля на ось рамочной антенны.

Принципы измерения плотности потока энергии ЭМП.

На частотах от 300 МГц до 300 ГГц плотность потока энергии (ППЭ) измеряется в уже сформировавшейся электромагнитной волне. В этом случае ППЭ связана с напряженностями электрического или магнитного полей. Поэтому для измерения ППЭ используются измерители среднего квадратического значения напряженностей электрического или магнитного полей, которые отградуированы в единицах плотности потока энергии электромагнитного поля.

6. Защитные мероприятия при работе с источниками ЭМП

При выборе средств защиты от статического электричества должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке защитных мероприятий.

Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

1) заземлением металлических и электропроводных элементов оборудования;

2) увеличением поверхностей и объемной проводимости диэлектриков;

3) установкой нейтрализаторов статического электричества. Заземление проводится независимо от использования других

методов защиты. Заземляются не только элементы оборудования, но и изолированные электропроводящие участки технологических установок.

Более эффективным средством защиты является увеличение влажности воздуха до 65-75%, когда это возможно по условиям технологического процесса.

В качестве индивидуальных средств защиты могут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.

При общем воздействии ПМП на организм работающих участки производственной зоны с уровнями, превышающими ПДУ, следует обозначить специальными предупредительными знаками с дополнительной поясняющей надписью: «Осторожно! Магнитное поле!» Необходимо осуществлять организационные мероприятия по снижению воздействия ПМП на организм человека выбором рационального режима труда и отдыха, сокращением времени нахождения в условиях действия ПМП, определением маршрута, ограничивающего контакт с ПМП в рабочей зоне.

При проведении ремонтных работ систем шинопроводов следует предусматривать шунтирующие решения. Лица, контактирующие с источниками ПМП, должны проходить предварительный и периодический медицинские осмотры. При медицинских осмотрах следует руководствоваться общими медицинскими противопоказаниями к работе с вредными факторами производственной среды.

При условии локального воздействия (ограниченного кистями рук, верхним плечевым поясом работающих) на предприятиях электронной промышленности следует применять сквозные технологические кассеты для работ, связанных со сборкой полупроводниковых приборов, ограничивающих контакт кистей рук работающих с ПМП. На предприятиях по производству постоянных магнитов ведущее место в профилактических мероприятиях принадлежит автоматизации процесса измерения магнитных параметров изделий с помощью цифровых автоматических устройств, что исключает контакт с ПМП. Целесообразно применение дистанционных приспособлений (щипцы из немагнитных материалов, пинцеты, захваты), которые предупреждают возможность локального действия ПМП на работающего. Должны применяться блокирующие устройства, отключающие электромагнитную установку при попадании кистей рук в зону действия ПМП.

В гигиенической практике используются три основных принципа защиты: защита временем, защита расстоянием и защита с помощью использования коллективных или индивидуальных средств защиты. Кроме того, проводятся предварительные и ежегодные периодические осмотры персонала, обеспечивающие профилактику неблагоприятного влияния на состояния здоровья.

Принцип защиты временем реализуются преимущественно в требованиях соответствующих нормативно-методических документов, регламентирующих производственные воздействия ЭМП ПЧ. Допустимое время пребывания персонала в условиях воздействия ЭМП ПЧ ограничивается продолжительностью рабочего дня и, соответственно, уменьшается с возрастанием интенсивности экспозиции. Для населения профилактика неблагоприятного влияния воздействий ЭП ПЧ обеспечивается наряду с дифференцированными ПДУ в зависимости от типа территории (селитебная, часто или редко посещаемая), что является проявлением обеспечения защиты человека за счет ограничения времени экспозиции, премущественно за счет реализации принципа защиты расстоянием. Для ВЛ сверхвысокого напряжения (СВН) различного класса устанавливаются возрастающие размеры санитарно-защитных зон.

Под размещение ВЛ 330 кВ и выше должны отводиться территории вдали от зоны жилой застройки.

При проектировании ВЛ напряжением 750-1150 кВ должно предусматриваться их удаление от границ населенных пунктов, как пра- вило, не менее чем на 250-300 м соответственно. И только в исключительных случаях, когда по местным условиям это требование не может быть выполнено, линии напряжением 330, 500, 750 и 1150 кВ могут быть приближены к границе сельских населенных пунктов, но не ближе, чем до 20, 30, 40 и 55 метров соответственно; при этом напряженность электрического поля под проводами ВЛ должна быть не более 5 кВ/м. Возможность приближения ВЛ к границе населенных пунктов должна согласовываться с органами Роспотребнадзора.

В то же время для МП ПЧ в связи с отсутствием соответствующего нормативно-методического документа, регламентирующего их внепроизводственные воздействия, защита населения не предусматривается (главным образом, из-за недостаточной изученности вопроса).

Профилактика неблагоприятного действия ЭМП ПЧ на человека применением средств защиты обеспечивается лишь для производственных воздействий и только для электрической составляющей (ЭП ПЧ) в соответствии с требованиями ГОСТ 12.1.002-84 и СанПиН N 5802-91 и специально разработанными для решения этих вопросов ГОСТ 12.4.154-85 «ССБТ. Устройства экранирующие для защиты от электрических полей промышленной частоты. Общие технические требования, основные параметры и размеры» и ГОСТ 12.4.172-87 «ССБТ. Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля».

К коллективным средствам защиты относятся две основных категории таких средств: стационарные и передвижные (переносные).

Стационарные экраны могут представлять собой различные заземленные металлические конструкции (щитки, козырьки, навесы - сплошные или сетчатые, системы тросов), размещаемые над рабочими местами персонала, находящимися в зоне действия ЭП ПЧ.

Передвижные (переносные) средства защиты представляют собой различные виды съемных экранов.

Коллективные средства защиты находят в настоящее время применение не только для обеспечения сохранения здоровья персонала, обслуживающего электроустановки сверхвысокого напряжения и подвергающегося вследствие этого воздействию ЭП ПЧ, но и для защиты населения с целью обеспечения нормативных значений напряженности ЭП ПЧ в зоне жилой застройки (чаще всего на территориях садовых участков, расположенных вблизи трассы ВЛ). В этих случаях чаще всего используются тросовые экраны, сооружаемые в соответствии с инженерными расчетами.

Основным индивидуальным средством защиты от ЭП ПЧ в настоящее время являются индивидуальные экранирующие комплекты. В России имеются различные типы комплектов с разной степенью экранирования не только для наземных работ в зоне воздействия ЭП ПЧ напряженностью не более 60 кВ/м, но и для выполнения работ с непосредственным касанием токоведущих частей, находящихся под напряжением (работ под напряжением) на ВЛ напряжением 110-1150 кВ. В целях предупреждения ранней диагностики и лечения нарушений состояния здоровья работающих под воздействием ЭМИ радиочастотного диапазона необходимо проведение предварительных и периодических медосмотров. Переводу на другую работу также подлежат женщины в период беременности и кормления, если уровни ЭМИ на рабочих местах превышают ПДУ, установленные для населения. Лица, не достигшие 18-летнего возраста, к самостоятельной работе на установках, являющихся источниками ЭМИ радиочастотного диапазона, не допускаются. Меры защиты работающих следует применять при всех видах работ, если уровни ЭМИ на рабочих местах превышают допустимые.

Защита персонала от воздействия ЭМИ радиочастотного диапазона достигается путем проведения организационных и инженерно-технических мероприятий, а также использования средств индивидуальной защиты.

К организационным мероприятиям относятся: выбор рациональных режимов работы установок; ограничение места и времени нахождения персонала в зоне облучения и другие. Данные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения. Для прогнозирования уровней электромагнитных излучений на стадии проектирования используются расчетные методы определения ППЭ и напряженности ЭМП.

Инженерно-технические мероприятия включают: рациональное размещение оборудования, использование средств, ограничивающих поступление электромагнитной энергии на рабочие места персонала (поглотители мощности, экранирование), а также электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения.

К средствам индивидуальной защиты относятся защитные очки, щитки, шлемы, защитная одежда (комбинезоны, халаты и т.д.). Способ защиты в каждом конкретном случае должен определяться с учетом рабочего диапазона частот, характера выполняемых работ, необходимой эффективности защиты.

Принципы защиты различны в зависимости от назначения и конструктивного выполнения излучателей. Защита персонала от облучения может осуществляться путем автоматизации технологических процессов или дистанционного управления, исключающих обязательное присутствие оператора вблизи источника излучения, путем экранирования рабочих индукторов.

Лечебно-профилактические мероприятия должны быть направлены, прежде всего, на раннее выявление признаков неблагоприятного воздействия ЭМП Для лиц, работающих в условиях воздействия ЭМП УВЧ- и ВЧ-диапазонов (средние, длинные и короткие волны), периодические медосмотры работающих осуществляются 1 раз в 24 мес. В медицинском осмотре принимают участие терапевт, невропатолог, офтальмолог.

При выявлении симптомов, характерных для воздействия ЭМП, углубленное обследование и последующее лечение проводятся в соответствии с особенностями выявленной патологии.

Список использованных источников

электромагнитный защитный вихревой ток

1. Безопасность жизнедеятельности человека в электромагнитных полях: методические рекомендации к выполнению практических работ по курсу «Безопасность жизнедеятельности» для студентов всех специальностей и форм обучения / А.Г. Овчаренко, А.Ю. Козлюк; Алт. гос. техн. ун-т, БТИ - Бийск: Изд-во Алт. гос. техн. ун-та, 2012. - 38 с.

2. Гигиена труда: учебник / Под ред. Н.Ф. Измерова, В.Ф. Кириллова. 2011. - 592 c.

3. ГОСТ 12.4.172-87 «ССБТ. Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля».

4. Приказ Минтруда России от 24.01.2014 N 33н «Об утверждении Методики проведения специальной оценки условий труда, Классификатора вредных и (или) опасных производственных факторов, формы отчета о проведении специальной оценки условий труда и инструкции по ее заполнению (с изменениями на 7 сентября 2015 года)».

5. СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы».

6. СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях».

7. СанПиН 2.2.4.3359-16 "Санитарно-эпидемиологические требования к физическим факторам на рабочих местах".

8. Электромагнитное поле: Учебное пособие; Мартинсон Л.К., Морозов А.Н., Издательство МГТУ им. Н.Э. Баумана, 2013 г. - 424 с.

Размещено на Allbest.ru

...

Подобные документы

    Основные источники электромагнитных полей, их воздействие на биологические объекты и человека. Механизмы воздействия магнитных полей на примере представителей семейства бобовых. Системы санитарно-гигиенического нормирования электромагнитных полей в РФ.

    дипломная работа , добавлен 18.04.2011

    Анализ области использования электромагнитных полей радиочастот. Принцип биологического действия ЭМП радиочастот. Характер и сущность гигиенического нормирования электромагнитных полей. Особенности защитных мероприятий при работе с источниками ЭМП.

    реферат , добавлен 19.08.2010

    Влияние электромагнитного поля и излучения на живые организмы. Основные источники электрических и магнитных полей. Опасность сотовых телефонов. Меры безопасности при пользовании мобильным телефоном. Нормы допустимого облучения и защита от его воздействия.

    реферат , добавлен 01.11.2011

    Воздействие на человека и среду обитания электромагнитных полей. Естественные и искусственные статические электрические поля в условиях техносферы. Воздействие на человека электромагнитных полей промышленной частоты и радиочастот. Аварии и катастрофы.

    контрольная работа , добавлен 21.02.2009

    Элементы системы "человек - среда обитания". Методы анализа несчастных случаев на производстве. Источники возникновения, воздействие на организм, нормирование параметров электромагнитных полей и вибрации. Способы утилизации твердых бытовых отходов.

    контрольная работа , добавлен 25.04.2013

    Вывод из организма радиоактивных элементов. Естественные источники ЭМП. Антропогенные источники электромагнитных полей (ЭМП). Влияние электромагнитных полей радиочастот на организм человека. Гигиеническое нормирование электромагнитных излучений.

    реферат , добавлен 25.03.2009

    Источники и воздействие электромагнитных излучений. Природные и антропогенные источники электромагнитных полей. Излучение бытовых приборов. Воздействие электромагнитных полей на организм. Защита от электромагнитных излучений.

    реферат , добавлен 01.10.2004

    Источники излучения электромагнитной энергии. Влияние электромагнитные полей на человека и меры защиты от них. Требования к проведению контроля уровней электромагнитных полей на рабочих местах. Допустимые уровни напряженности электрических полей.

    презентация , добавлен 03.11.2016

    Исследование влияния электромагнитных полей на здоровье человека. Изучение биологического воздействия полей разных диапазонов на организм. Защита от электромагнитного излучения бытовой техники, компьютеров, телевизоров, радиотелефонов, оргтехники.

    презентация , добавлен 25.11.2015

    Электромагнитное поле Земли как необходимое условие жизни человека. Источники постоянных магнитных полей: электромагниты с постоянным током; магнитопроводы в электрических машинах и аппаратах; литые магниты. Воздействие электромагнитных волн на человека.

Способ измерения напряженности электромагнитного поля заключается в помещении в измеряемое электромагнитное поле К антенн-датчиков и регистрации напряжений на элементе нагрузки К антенн-датчиков U 1 ....U K , пропорциональных напряженности воздействующего электромагнитного поля, все К антенны-датчики имеют отличительные друг от друга амплитудно-частотные характеристики, число антенн-датчиков К равняется числу источников излучения N или превышает его, К N, напряженности всех N составляющих электромагнитного поля E 1 ....E N определяют из решения системы линейных уравнений. Технический результат в увеличении точности измерений, определении напряженности всех составляющих поля. 1 ил., 1 табл.

Изобретение относится к области измерения, а именно к разделу "измерение напряженности магнитного поля" (класс G 01 R 29/08), и может быть использовано для измерения интенсивности электромагнитных полей радиочастот в экологии, для определения безопасности персонала и решения других аналогичных задач.

Известные методы измерения электромагнитных полей радиочастот основаны в помещении антенны-датчика в измеряемое поле и регистрации напряжения, наводимого измеряемым полем в нагрузке приемной антенны-датчика, с последующим расчетом напряженности поля при помощи известных зависимостей, связывающих значение напряженности поля и параметров датчика и нагрузки (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 163, или Адольф И. Шваб "Электромагнитная совместимость", М. 1998 г., с. 254). Указанный способ используется при измерениях на относительно низких радиочастотах, в диапазоне сверхвысоких частот используется аналогичный способ, отличающийся тем, что регистрируется мощность, выделяющаяся в нагрузке приемной антенны-датчика при помещении антенны-датчика в измеряемое поле, а при пересчете измеренной величины используются зависимости, связывающие величину выделившейся мощности с параметрами антенн-датчиков и плотностью потока мощности измеряемого поля (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 164).

Указанные способы измерения реализованы с использованием различных вариантов выполнения антенн-датчиков (см. Патент СССР A1 1649478 за 1991 г.) в измерительных приборах, предназначенных для измерения уровня электромагнитных полей в целях определения уровней, опасных для жизнедеятельности, например в отечественных приборах типа: ПЗ-16...ПЗ-21, а также в последней модификации Поле-3, суть которых заключается в измерении с выхода антенн-датчиков, предназначенных для работы в своем диапазоне частот, напряжения, пропорционального напряженности поля. При этом коэффициенты пропорциональности для каждой антенны-датчика в своем диапазоне известны.

Известны также способы частотно-селективных измерений, в которых электрические колебания, принятые приемной антенной-датчиком и содержащие колебания различных частот, фильтруют при помощи полосовых фильтров, усиливают, детектируют, измеряют и регистрируют величину выходного напряжения (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 174).

Способ частотно-селективных измерений применяется преимущественно для измерения относительно слабых полей. Способы реализованы в различных измерительных приемниках, селективных микровольтметрах, представляющих собой сложные и дорогостоящие устройства.

Прототипом изобретения является способ измерения напряженности поля путем помещения в измеряемое поле антенны-датчика и регистрации напряжения, пропорционального измеряемой напряженности, в нагрузке антенн-датчиков (см. книгу А. Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 163).

Способ состоит в помещении антенны-датчика в измеряемое поле, регистрации напряжения, создаваемого измеряемым полем в нагрузке приемной антенны, и определении напряженности электрического поля согласно известной зависимости, связывающей значение измеряемой напряженности поля с электрическими параметрами антенны-датчика и нагрузки.

Указанная зависимость имеет вид

E - напряженность электрического поля, В/М;

h g (f) - эквивалентная высота антенны-датчика, М;

Z н (f) - сопротивление нагрузки антенны-датчика, Ом;

Z а (f) - эквивалентное сопротивление антенны-датчика, Ом;

К(f) - значение амплитудно-частотной характеристики по частоте, М.

Недостатком прототипа являются невозможность точного определения напряженности поля, создаваемого источником на определенной частоте f 1 , за счет помех от источников, излучающих на других частотах f i , где i = 2...N, а также невозможность определения напряженностей электромагнитного поля, создаваемых этими источниками помех. Напряжение, наводимое в нагрузке антенн-датчиков при воздействии на него N источников излучения с частотами f i , будет определяться выражением

где U - напряжение на выходе антенны-датчика, В;

K(f i) - значение амплитудно-частотной характеристики на частоте излучения i-го источника (f i), М;

E i - напряженность электрического поля на частоте излучения i-го источника (f i), В/М;

f i - частоты излучения i-го источника, Гц;

N - число источников излучения в измеряемом поле.

Таким образом, в реальных условиях вследствие конечной восприимчивости антенной-датчиком излучения с частотами, не входящими в частотный диапазон применяемой антенны-датчика, измерение истинного значения напряженностей поля становится невозможным.

Измеритель П3-80 предназначен для измерения среднеквадратичных значений напряженности переменных электрических (НЭП) и магнитных (НМП) полей и индустриальных источников в диапазоне частот 5-500000 Гц, а также для измерения напряженности электростатических полей (НЭСП).

Основная область применения - контроль электромагнитной обстановки, измерение индустриальных радиопомех, измерение биологически опасных уровней электромагнитных полей в соответствии с СанПиН 2.2.4.1191-03, а также для научных исследований.

Измеритель удовлетворяет требованиям ГОСТ 22261, а по условиям эксплуатации относится к группе 4 по ГОСТ 22261-94. Прибор не содержит пожароопасных, взрывчатых и других веществ, опасных для здоровья и жизни людей.

Измеритель поставляется в следующей комплектации.

Цифровой преобразователь электромагнитного поля П3-80-ЕН500.

Цифровой преобразователь электростатического поля П3-80-Е.

Индикаторный блок (ИБ) типа ЭКОФИЗИКА-D1 (в комплекте с набором аккумуляторов: 4 элемента типа АА (LR6)).

Эксплуатационная документация: руководство по эксплуатации, паспорт.

Технические характеристики прибора П3-80

Рабочий диапазон частот измерителя

С преобразователем П3-80-ЕН500: от 0,005 до 500 кГц.

Измеряемые параметры

В режиме П3-80-Е400 (П3-80-Н400)

Текущие, максимальные и минимальные среднеквадратичные значения НЭП (НМП) в 27 полосах в диапазоне от 25 до 675 Гц;

Текущие, максимальные и минимальные среднеквадратичные значения НЭП (НМП) в полосах 10 кГц - 30 кГц; 5-2000 Гц, 2 кГц - 400 кГц.

В режиме П3-80-Е300 (П3-80-Н300)

Текущие, максимальные и минимальные среднеквадратичные значения НЭП (НМП) на характеристиках 30-300 Гц, 300-3000 Гц, 3 кГц -30 кГц, 30 кГц -300 кГц с опорными частотами 50 Гц, 500 Гц, 10 кГц, 100 кГц.