Нарисуй не отрывая руку больше трех раз. Решение задачки, как нарисовать конверт не отрывая руки

Современных детей сложно чем-то увлечь. Они любят смотреть мультики и играть в компьютерные игры. Но умные родители всегда способны заинтересовать свое чадо. Например, они могут предложить ему найти способ, как нарисовать конверт не отрывая руки. О некоторых хитростях этого задания читайте ниже.

Разминка

Прежде чем начать мучить ребенка логическими заданиями, нужно провести с ним подготовительную работу. Зачем она нужна? Чтобы ребенок не мухлевал, когда начнет ломать голову над вопросом о том, как нарисовать конверт не отрывая руки. Ведь самое интересное в этой задачке то, что линия должна идти от точки к точке беспрерывно.

Какие же задания можно предложить ребенку в качестве разминки? Конечно, первое это должны быть восьмерки. Рисование этой цифры и стресс снимает, и мозг очищает, и руку тренирует. В общем, полезное упражнение. После этого можно переходить к рисованию округлых форм. Это могут быть завитки или любые другие закорючки, главное, чтобы в процессе рисования ребенок не отрывал карандаша и изображал все одной плавной линией.

Как нарисовать закрытый конверт

Многие родители и сами потратили не один час, прежде чем предложить такое задание ребенку. Вы тоже можете попробовать. Но мы сразу можем вас огорчить - выполнить такое задание, немного не слукавив, просто невозможно. Поэтому расскажем способ, который поможет вам и вашему ребенку немного выйти за рамки обычной логики, чтобы понять, как нарисовать закрытый конверт не отрывая руки.

Берем лист бумаги и загибаем у него край. Отгибаем его назад. Теперь наша задача состоит в том, чтобы нарисовать верхний край закрытого конверта как раз на линии загиба. Чтобы легче было понимать, расставим точки на концах прямоугольника. Пронумеруем их, начиная с верхнего левого угла. Здесь будет стоять цифра один и дальше по часовой стрелке. Из цифры 4 к 1 проводим линию, теперь соединяем 1 с 2 и теперь рисуем диагональ к 4. От 4 к 3 ведем прямую линию, а потом опять диагональ к 1.

Теперь переходим к самому интересному. Загибаем край нашего листа и изображаем зигзаг, который образует как бы шапку нашего конверта. Проходить она будет из 1 к 2. Осталось соединить 2 и 3 прямой линией - и головоломка решена. Отгибаем часть листа назад. Загадку, как нарисовать конверт не отрывая руки, можно предлагать не только детям, но и друзьям или коллегам.

Как нарисовать открытый конверт

Те, кто внимательно читали предыдущий пункт и по описанию создал свой рисунок, уже поняли, как ответить на вопрос, поставленный выше. Ведь решение загадки, как нарисовать открытый конверт не отрывая руки, будет аналогичным написанному в предыдущем пункте. Только здесь не придется загибать и отгибать части листа. Все изображение будет делаться одной линией по той же схеме.

Но если вы не хотите повторяться, то мы предлагаем еще один способ, который приведет к тому же результату. Как нарисовать конверт не отрывая руки вторым способом? Для начала рисуем опять точками прямоугольник и снова его нумеруем, как в предыдущем пункте. Из цифры 4 к 2 ведем диагональ, от 2 к 3 - прямую линию, а от 3 к 1 - опять диагональ. Дальше нужно нарисовать уголок. От 1 к 2 рисуем зигзаг, который обозначает верхнюю часть конверта. От 2 возвращаемся к 1 прямой линией и завершаем наше построение поочередно проводя прямые от 1 к 4 и от 4 к 3.

Зачем нужны такие задачки

Такие нужно выполнять не только детям, но и взрослым. Благодаря им человеческий мозг напрягается и начинает работать. Если приучить себя выполнять по аналогичному заданию каждый день, уже через месяц можно будет заметить, что в критических ситуациях решения генерируется быстрее и сил на это затрачивается меньше. Школьникам особенно полезно изучать задачки на логику. Таким образом они тренируют креативность и учатся нестандартно подходить к стандартным вопросам.

Если вы попали на эту страницу, то вы наверняка уже пытались решить «тест 9 точек», а именно соединить девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги. Если у вас не получилось разгадать эту головоломку, не отчаивайтесь. На этой странице вы сможете найти несколько решений этой знаменитой непростой задачи о девяти точках, которые напрягли умы уже многих тысяч, если не миллионов людей.

Условие задачи

Условие:

Условие: нужно соединить нарисованные девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги.

Эта задача является не такой уж простой, как может показаться. Чтобы ее решить нужно думать нестандартно и применить свое творческое мышление , иначе ничего не получится. Если пытаться действовать в лоб начать соединять все точки стандартными линиями, то вы можете потратить уйму времени и так и не решить задачу девяти точек. Наше стандартное мышление, которому нас учат в школе, направляет нас искать решение, опираясь лишь на шесть типичных линий: 4 стороны квадрата и 2 его диагонали. Большинству людей кажется, что решение головоломки о 9 точках должно лежать именно в этих рамках. Но его там нет. Его даже не найти если подключить еще 2 линии между центрами сторон квадрата:

Вообще между всеми девятью точками можно провести всего 20 прямых линий: 4 стороны квадрата; 2 диагонали; 6 линий, соединяющих центры сторон большого квадрата; 8 линий соединяющих центры сторон большого квадрата с его углами. Как нарисовать все отрезки, соединяющие наши 9 точек, показано на рисунке ниже:

Но, даже используя эту схему, невозможно найти 4 линии, которыми можно было бы соединить все девять точек, не отрывая руки.

Верное решение «теста 9 точек»

Решение этой головоломки лежит несколько шире нашего стандартного восприятия задачи. Для того, чтобы самостоятельно найти верный подход вспомните, что:

  1. Через любые 2 точки можно провести только одну прямую линию.
  2. Прямая линия – это не отрезок и, следовательно, нам не обязательно ограничиваться при рисовании линий нашими девятью синими кружками.

Таким образом, давайте попробуем продолжить линии за пределы, ограничивающего нас до недавнего времени квадрата. Тут видно, что область нашего поиска значительно увеличилась. Потрудившись немного можно прийти к одному из правильных решений.

Последовательность соединений девяти точек четырьмя линиями:

  1. Для начала проведите линию, соединяющую точку №1 и точку №7, через точку №4. Не останавливайте движение и рисуйте дальше примерно столько, сколько от точки №4 до точки №7.
  2. Далее двигайтесь по диагонали направо-вверх, соединяя точки №8 и №6. Не останавливайтесь на точке №6 и продолжайте линию до мысленной прямой, проходящей через верхнюю сторону нашего квадрата.
  3. Нарисуйте линию справа налево последовательно через точки №3, №2 и №1. Остановитесь на точке №1.
  4. Теперь проведите финальный отрезок через точки №1, №5 и №9. Все 9 точек, и правда, соединены четырьмя линиями, как и требовалось в условии задачи.

Другие варианты. Этот способ не единственный, начинать можно от любого угла и двигаться одном из двух направлений. На сайте 4brain таких вариантов решения задачи «9 точек 4 линии» представлено минимум 12:

Только подумайте, задача, которую многие никак не могут решить, имеет 12 способов решения. Также смотрите упрощенный вариант этой задачи : как соединить 4 точки тремя линиями, чтобы линии замыкались в целую фигуру.

Творческий подход в этой головоломке

Большинство людей, которые решали эту задачу, так и не смогли выбраться за рамки стандартного мышления, которое в данном тесте выражено квадратом, образованным девятью точками. Нам комфортно смотреть на любую жизненную задачу прямо, наиболее просто. С другой стороны, человек может потратить много времени и сил для того, чтобы, используя стандартный подход, найти верное решение, когда это решение лучше искать, изначально подойдя к процессу творчески.

В нашей жизни мы часто сталкиваемся с такими задачами о «девяти точках и четырех линиях», и для того, чтобы их решать развивайте свое креативное мышление , в том числе и при помощи нашего тренинга . Ведь задача о 9 точках имеет и другие решения (об этом читайте дальше).

Другие способы решения

Изменив наш фрейм или применив латеральный разрыв можно найти и другие варианты решения этой задачи. Например, метод гиперболизации при создании латерального разрыва может нас привести к мысли, что никто не уточняет, что в задаче должны применяться стандартные условия геометрии (о бесконечной малости точек и бесконечной тонкости линий). Пусть наша линия будет настолько широкой, что сможет сразу пересекать несколько точек по своей ширине. Тогда мы не то что 4-мя линиями сможем соединить все 9 точек, а даже одной.

Кроме того, даже в нашем изображении 4-х точек, которое дано в нашем условии головоломки о 9 точках, сами точки-кружки достаточно большие, чтобы можно было их соединить 3-мя линиями вот так:

А может вообще не стоит ограничиваться двухмерным пространством или использовать концепцию искривления пространства. Также мы можем акцентировать внимание на фразу «не отрывая ручки от листа бумаги», и просто положив ручку на бок передвинуть ее и таким образом нарисовать просто 3 параллельных линии.

I. Постановка проблемной ситуации.

Наверное, все помнят с детства, что очень популярна была следующая задача: не отрывая карандаша от бумаги и не проводя по одной линии дважды, начертить “открытый конверт”:

Попробуйте нарисовать “открытый конверт”.
Как вы видите, что у некоторых получается, а у некоторых нет. Почему это происходит? Как правильно рисовать, чтобы получилось? И для чего она нужна? Чтобы ответить на эти вопросы, я расскажу вам, один исторический факт.

Город Кенигсберг (после мировой войны он называется Калининград) стоит на реке Преголь. Некогда там было 7 мостов, которые связывали между собой берега и два острова. Жители города заметили, что они никак не могут совершить прогулку по всем семи мостам, пройдя по каждому из них ровно один раз. Так возникла головоломка: “можно ли пройти все семь кенигсбергских мостов ровно один раз и вернуться в исходное место?”.

Попробуйте и вы, может у кого-нибудь получится.

В 1735 году эта задача стала известна Леонарду Эйлеру. Эйлер выяснил, что такого пути нет, т. е. доказал, что эта задача неразрешима. Конечно, Эйлер решил не только задачу о кенигсбергский мостах, а целый класс аналогичных задач, для которых разработал метод решения. Можно заметить, что задача состоит в том, чтобы по карте провести маршрут – линию, не отрывая карандаша от бумаги, обойти все семь мостов и вернуться в начальную точку. Поэтому Эйлер стал рассматривать вместо карты мостов схему из точек и линий, отбросив мосты, острова и берега, как не математические понятия. Вот что у него получилось:

А, В – острова, M, N – берега, а семь кривых – семь мостов.

Теперь задача такая – обойти контур на рисунке так, чтобы каждая кривая проводилась ровно один раз.
В наше время такие схемы из точек и линий стали называть графами, точки называют вершинами графа, а линии – ребрами графа. В каждой вершине графа сходится несколько линий. Если число линий четно, то вершина называется четная, если число вершин нечетно, то вершина называется нечетной.

Докажем неразрешимость нашей задачи.
Как видим, в нашем графе все вершины нечетные. Для начала докажем, что, если обход графа начинается не с нечетной точки, то он обязательно должен закончится в этой точке

Рассмотрим для примера вершину с тремя линиями. Если мы по одной линии пришли, по другой вышли, и по третьей опять вернулись. Все дальше идти некуда (ребер больше нет). В нашей задаче мы сказали, что все точки нечетные, значит, выйдя из одной из них, мы должны закончить сразу в трех остальных нечетных точках, чего не может быть.
До Эйлера ни кому в голову не приходило, что головоломка о мостах и другие головоломки с обходом контура, имеет отношение к математике. Анализ Эйлера таких задач “является первым ростком новой области математики, сегодня известной под названием топология”.

Топология – это раздел математики, изучающий такие свойства фигур, которые не меняются при деформациях, производимых без разрывов и склеивания.
Например, с точки зрения топологии, круг, эллипс, квадрат и треугольник обладают одинаковыми свойствами и являются одной и той же фигурой, так как можно деформировать одну в другую, а вот кольцо к ним не относится, так как, чтобы его деформировать в круг, необходима склейка.

II. Признаки вычерчивания графа.

1. Если в графе нет нечетных точек, то ее можно нарисовать одним росчерком, не отрывая карандаша от бумаги, начиная с любого места.
2. Если в графе две нечетные вершины, то ее можно начертить одним росчерком, не отрывая карандаша от бумаги, причем вычерчивать нужно начинать в одной нечетной точке, а закончить в другой.
3. Если в графе более двух нечетных точек, то ее нельзя начертить одним росчерком карандаша.

Вернемся к нашей задаче с открытым конвертом. Подсчитаем количество четных и нечетных точек: 2 нечетные и 3 четные, значит, эту фигуру можно начертить одним росчерком, причем начать нужно в нечетной точке. Попробуйте, теперь у всех получилось?

Закрепим полученные знания. Определите, какие фигуры можно построить, а какие нельзя.

а) Все точки четные, поэтому эту фигуру можно построить, начиная с любого места, например:

б) В этой фигуре две нечетные точки, поэтому ее можно построить не отрывая, карандаша от бумаги, начиная с нечетной точки.
в) В этой фигуре четыре нечетные точки, поэтому ее нельзя построить.
г) Здесь все точки четные, поэтому ее можно построить, начиная с любого места.

Проверим, как вы усвоили новые знания.

III. Самостоятельная работа по карточкам с индивидуальными заданиями.

Задание : проверить, можно ли совершить прогулку по всем мостам, пройдя по каждому из них ровно один раз. И если можно, то нарисовать путь.

IV. Итоги занятия.

Математик Леонард Эйлер однажды задумался над вопросом, можно ли перейти через все мосты в том городе, где он тогда жил, так, чтобы ни через один мост не проходить дважды? Этот вопрос положил начало новой увлекательной задаче: если дана геометрическая фигура, как начертить ее на бумаге одним росчерком пера, не проводя дважды ни одну линию?

Инструкция

Предполагается, что заданная фигура состоит из точек, соединенных прямыми или искривленными отрезками. Следовательно, в каждой такой точке сходится определенное число отрезков. Такие фигуры в математике принято называть графами.

Если в точке сходится четное число отрезков, то и саму такую точку называют четной вершиной. Если число отрезков нечетное, то вершина называется нечетной. Например, квадрат, в котором проведены обе диагонали, обладает четырьмя нечетными вершинами и одной четной - в точке пересечения диагоналей.

У отрезка по определению два конца, и следовательно, он всегда соединяет две вершины. Поэтому, просуммировав все входящие отрезки для всех вершин графа, можно получить только четное число. Следовательно, каков бы ни был граф, нечетных вершин в нем всегда будет четное количество (в том числе ноль).

Граф, в котором вовсе нет нечетных вершин, всегда можно начертить, не отрывая руки от бумаги. При этом все равно, с какой вершины начинать.

Если нечетных вершин всего две, то такой граф тоже уникурсален. Путь обязательно должен начинаться в одной из нечетных вершин, а закончиться - в другой из них.

Фигура, в которой нечетных вершин четыре или больше, не уникурсальна, и без повторений линий начертить ее не удастся. Например, тот же квадрат с проведенными диагоналями не уникурсален, так как у него четыре нечетных вершины. Но квадрат с одной диагональю или «конверт» - квадрат с диагоналями и «крышечкой» - можно начертить одной линией.

Чтобы решить задачу, нужно представить, что каждая проведенная линия исчезает из фигуры - второй раз по ней пройти нельзя. Следовательно, изображая уникурсальную фигуру, нужно следить, чтобы оставшаяся часть работы не распадалась на не связанные между собой части. Если такое случится, довести дело до конца уже не получится.


Внимание, только СЕГОДНЯ!

Все интересное

Куб - распространенная геометрическая фигура, знакомая практически каждому, кто хотя бы немного знаком с геометрией. При этом она имеет строго определенное количество граней, вершин и ребер. Куб - это геометрическая фигура, имеющая 8 вершин. Помимо…

Треугольник - одна из наиболее распространенных геометрических фигур, которая имеет большое количество разновидностей. Одной из них является прямоугольный треугольник. Чем он отличается от других подобных фигур? Обыкновенный треугольник…

Построение разнообразных геометрических фигур – занятие не только увлекательное, но и полезное. Эллипсы, круги, прямоугольники, многоугольники и квадраты могут потребоваться вам для воплощения в жизнь каких-то дизайнерских решений, оформительских…

Призма («нечто отпиленное» в переводе с греческого) состоит из двух оснований одинаковой формы, которые лежат в параллельных плоскостях, и боковых граней. Боковые грани имеют форму параллелограмма, а их количество зависит от числа вершин…

Треугольник – одна из простейших классических фигур в математике, частный случай многоугольника с числом сторон и вершин, равном трем. Соответственно, высот и медиан у треугольника тоже по три, а найти их можно по известным формулам, исходя из…

Иногда около выпуклого многоугольника можно начертить окружность таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри…

Результатом соединения в четырехугольнике противоположных друг другу вершин является построение его диагоналей. Существует общая формула, связывающая длины этих отрезков с другими измерениями фигуры. По ней, в частности, можно найти длину диагонали…

Высота треугольника - это прямая, которая проведена из одной из его вершин к противоположной стороне под углом в 90 градусов. Любой треугольник имеет 3 высоты. Но в зависимости от типа треугольника построение его высот имеет некоторые особенности. …

Многоугольник – это плоская геометрическая фигура, состоящая из отрезков, пересекающихся в трех или более точках. При этом многоугольник является замкнутой ломаной линией. В многоугольнике точки - это вершины, а отрезки – стороны. Вершины,…

Изобразить на листе бумаги квадрат или правильный треугольник довольно просто. А как быть, если необходимо начертить плоскую фигуру с пятью гранями? Чтобы нарисовать такую фигуру, вам понадобятся самые простые инструменты. Вам понадобится- лист…

Медиана – отрезок, который берет начало в одной из вершин треугольника и заканчивается в точке, делящей противолежащую сторону треугольника на две равные части. Построить медиану, не проводя математических вычислений, довольно просто. Вам…