Почему широкий динамический диапазон убивает кинематографичность. Три способа расширения динамического диапазона

Слово «фотография» происходит от греческих слов phos и graphe , что означает свет и рисование , соответственно. Таким образом, создание фотографии в самом строгом определении буквально означает «рисовать светом». Но рисование светом может быть достаточно сложным, учитывая количество света, с которым приходится работать!

Иногда вы можете оказаться в ситуации с большим количеством света, например, на открытом воздухе или в хорошо освещенном зале, а в другой раз свет настолько тусклый, что вам приходится создавать свой источник с помощью вспышки или оставлять затвор открытым на продолжительное время. Однако, вполне вероятно, что все закончится тем, что при съемке у вас будет света так же много, как и теней, а потому получить желаемый снимок будет очень сложно. К счастью, существует такой термин, который поможет вам в таких ситуациях – это динамический диапазон. Знание того, что он означает и как влияет на ваши фотографии, поможет в создании таких снимков, какие вы хотите.

Настройки сцены

Динамический диапазон имеет два основных применения в фотографии. Первое относится к сцене, которую вы фотографируете, а второе - более техническое по своей природе и помогает описать атрибуты сенсора камеры. (Это маленький прямоугольный микрочип, который используется камерой для создания изображений, как маленькая квадратик цифровой пленки).

В большинстве случаев фотограф старается сделать изображение с хорошей экспозицией, что означает, что светлые участки не слишком светлые, а темные – не слишком темные. В этом смысле динамический диапазон относится к общему количеству света, полученного в данной сцене. Если вы делаете фотографию с множеством светлых участков, наполненных светом, в сочетании с темными участками, окутанными тенями, то сцена может быть описана как имеющая широкий динамический диапазон (высокую контрастность). Если, однако, сцена освещена таким образом, что она не слишком светлая и не слишком темная, то можно сказать, что она имеет низкий динамический диапазон (низкая контрастность).

Этот снимок гуся имеет низкий динамический диапазон, то есть он равномерно экспонирован без каких-либо участков определенно светлых или темных.

Нет правильного и неправильного

Нет плохих или хороших сцен, но важно знать, когда вы идете фотографировать и в каких условиях освещения, чтобы вы могли планировать в соответствии с ними. Если вы снимаете в середине дня, то, скорее всего, получите очень яркое изображение с множеством теней, потому что солнечный свет интенсивный и находится над головой. Это называется сценой с высоким динамическим диапазоном, так как содержит очень светлые и очень темные элементы. Вы должны знать, как контролировать сцену, а также вашу камеру, чтобы получить желаемый снимок.

Этот снимок гуся был сделан в условиях , которые привели к высокому динамическому диапазону . Некоторые участки очень светлые, а другие скрыты в тенях.

Передайте свое виденье

При съемке важно учитывать динамический диапазон. Понимание ситуации, в которой вы фотографируете, является необходимым условием для получения желаемого результата. Рисуя светом, вы должны понимать, как он воздействует на ваши снимки.

Например, вот портрет, который я сделал на улице в солнечный день. Моя модель была хорошо освещена, но задний план позади нее был слишком ярким. Это привело к тому, что я не был доволен снимком. Внимание зрителя должно быть на ее лице, но яркий задний план отвлекает.

Гистограмма даст вам подсказки о динамическом диапазоне

Взгляд на гистограмму этого изображения подтверждает то, что я понял, взглянув на сцену. Большая часть данных рассредоточена слева и справа. Это означает, что сцена содержит как очень яркие, так и очень темные участки, а, следовательно, имеет широкий динамический диапазон.

Такие фотографии не обязательно неудавшиеся. Некоторые фотографы предпочитают широкий динамический диапазон, создавая ощущение контраста и пронзительности, которых зачастую не хватает в условиях равномерной экспозиции. Лично я не являюсь большим поклонником такого типа изображений, и в данном случае все было легко исправить, лишь немного повернувшись и использовав здание для более ровной экспозиции.

Опять же, я могу взглянуть на гистограмму в Lightroom и увидеть, что данные более не разделены в двух крайних точках, а распределены более равномерно. Кроме того, вы можете использовать режим Live View в вашей камере и видеть гистограмму в реальном времени во время съемки. Если вы видите, что она выглядит как две горы с долиной между ними, то это говорит о том, что сцена получится с гораздо большим контрастом, чем вы можете предпочесть.

HDR – высокий динамический диапазон

Один трюк, который некоторые фотографы используют в последнее время, называется HDR или обработка в высоком динамическом диапазоне. Это способ получить лучшее, комбинируя несколько композиций в одном изображении путем использования только нужных частей. Таким образом, в сцене, где есть очень яркие и темные участки, вы можете взять несколько снимков – недоэкспонированных и переэкспонированных, и объединить их в программе на вашем телефоне или компьютере, и в итоге получить изображение с ровной экспозицией. Единственный недостаток этого заключается в том, что финальное изображение может казаться неправдоподобным и искусственным для человеческих глаз (если техника HDR применена неправильно).

Технологии спасения

Человеческий глаз – это биологическое чудо. Даже современные цифровые камеры не могут приблизиться к тому, чтобы соответствовать нашим собственным окулярным инструментам. Сенсоры цифровых камер сегодня на шаг впереди своих предшественников, которые существовали 10 или даже 5 лет назад, но наши собственные глаза легко их превосходят, когда речь идет о динамическом диапазоне.

Предельный высокий динамический диапазон и проблема, которую он собой несет

В качестве примера попробуйте стать в комнате в солнечный день с большим количеством теней. Это создает сцену с высоким динамическим диапазоном, так как она содержит как очень яркие (за окном), так и очень темные участки (внутри комнаты). Ваши глаза все еще смогут отличить цвета и формы внутри комнаты, а также все, что находится за окном. Но попробуйте сделать фотографию. Вы получите изображение, экспонированное по светам (т.е., на улице) с темной комнатой, либо экспонированное по комнате (т.е., тени), и ничего за окном не будет видно.

Камера экспонировала по светам, оставив комнату в темноте.

Большинство камер передают сцену таким образом. Однако, техника HDR может быть использована, чтобы создать несколько изображений с разными экспозициями, которые можно комбинировать в один снимок с ровной экспозицией.

Камера экспонировала по теням, сделав вид за окном слишком ярким.

Технологии развиваются

Несмотря на то, что наши глаза превосходят любую камеру, в последнее время сенсоры цифровых камер гораздо лучше передают яркие и темные участки сцены, но только самые яркие и самые темные. В этом смысле термин «динамический диапазон» относится не к условиям освещения, а к возможностям сенсора камеры.

Некоторые модели, как Nikon D810 или Canon 5D Mark IV настолько продвинуты, что одно изображение в формате RAW может быть обработано с возможностью восстановить все данные, которые обычно утрачиваются. Например, когда я снимал этот восход, я экспонировал по светам и получил красивое чистое изображение с богатыми цветами на небе, но побочным эффектом было то, что земля стала совсем черной.

Благодаря технологии, заключенной в сенсоре Nikon 750, камера захватила гораздо больше данных, чем вы можете увидеть изначально. Я снимал в RAW при ISO 100, что означает, что я мог использовать преимущество большого количества данных, полученных в этом изображении, и восстановить их из теней.

То же изображение, но со значительно меньшими тенями после обработки в Lightroom .

Это преувеличенный пример и обычно я не рекомендую применять такую сильную обработку. Но я использую его, чтобы проиллюстрировать, какой динамический диапазон содержат современные сенсоры камер. Другой пример, пожалуй, более реалистичный, показывая важность сенсора, способного захватить высокий уровень динамического диапазона.

Первое изображение прямо из камеры (Nikon D7100). Хотя элементы заднего плана довольно хорошо экспонированы, белка и дерево слишком темные. Поскольку сцена сама по себе имеет высокий уровень динамического диапазона, то получить правильную экспозицию довольно сложно. К счастью, я мог использовать Lightroom, чтобы вытянуть большое количество деталей в тенях, которые могли бы быть утрачены, если сенсор имел бы низкий динамический диапазон.

Необработанный снимок с хорошо экспонированным небом и недоэкспонированными объектами.

Несколько щелчков мыши на моем компьютере позволило значительно улучшить оригинал.

Заключение

На протяжении многих лет производители камер были вовлечены в соревнование с тем, чтобы создать продукт, имеющий больше мегапикселей. Но в последнее время эта цифровая гонка вооружений зашла в тупик, так как 20-24 мегапикселя, которыми оснащены практически большинство камер, в высшей степени подходят практически для любой ситуации. Вместо этого фокус сместился на то, чтобы улучшить такие параметры, как ISO и расширить динамический диапазон сенсора. Это будет продолжаться до тех пор, пока сенсоры не станут настолько хороши, чтобы делать качественные фотографии в любых условиях.

Действительно, мы живем в такие удивительные времена, когда наши камеры могут создавать прекрасные картины светом, так сказать, практически в любом свете.

Индустрия производства развивается с высокой скоростью. Каждый год на выставках производители представляют новейшие технологии, позволяющие улучшить телевизоры и убедить людей, что пришло время для обновления.

Эволюция

Последние несколько лет провели нас от моделей с экранами на электронно-лучевой трубке до тонких телевизоров. Наблюдался взлет плазменных панелей и их падение. Затем пришла эра высокой четкости, полная поддержка HD и Ultra HD. Были эксперименты и с популярным трехмерным форматом, а также с формой экрана: его делали то плоским, то изогнутым. И вот наступил новый виток этой телевизионной эволюции - телевизоры с HDR. Именно 2016 год стал новой эрой в телевизионной промышленности.

в телевизоре?

Данная аббревиатура расшифровывается как «расширенный динамический диапазон». Технология дает возможность с максимальной точностью приблизить созданную картинку к тому, что человек видит в реальной жизни. Сам по себе наш глаз воспринимает сравнительно маленькое число деталей на свету и в тенях в один момент времени. Но после того как зрачки адаптируются к текущим условиям освещения, их чувствительность увеличивается почти вдвое.

Фотоаппараты и телевизоры с HDR: в чем отличия?

В обоих видах техники задача данной функции является одинаковой - с максимальной достоверностью передать окружающий мир.

Из-за ограничений матриц фотокамер делают несколько снимков с различной экспозицией. Один кадр является очень темным, другой - немного светлее, еще два - очень светлые. Все они потом соединяются при помощи специальных программ вручную. Исключением являются фотоаппараты со встроенной функцией склеивания кадров. Смыслом данной манипуляции является вытаскивание всех деталей из теней и светлых областей.

Телевизоры с поддержкой HDR производители сделали акцентированными на яркости. Так, в идеале устройство должно быть способно в произвольной точке выдавать значение в 4000 кандел на квадратный метр. Но при этом детализация в тенях не должна быть завалена.

Для чего нужен HDR?

Самыми важными параметрами для качества отображаемой картинки являются точность цветопередачи и контрастность. Если поставить рядом 4K-телевизор с HDR-телевизором, который имеет лучшую цветопередачу и увеличенный диапазон контрастности, то большая часть людей остановит свой выбор на втором варианте. Ведь на нем картинка выглядит менее плоско и более реалистично.

Телевизоры с HDR обладают увеличенной градацией, что позволяет получить большее число оттенков различных цветов: красного, синего, зеленого, а также их комбинаций. Таким образом, смыслом моделей с HDR является отображение более контрастной и полноцветной картинки, чем у других телевизоров.

Возможные проблемы

Для того чтобы в полной мере насладиться всеми плюсами технологии, к сожалению, нужны не только телевизоры с HDR, но и контент, который будет соответствовать технологии. В принципе, телевизоры с расширенным динамическим диапазоном изображения делают уже вполне качественно. Яркость моделей поднята в два раза, а подсветка стала локальной и прямой, то есть в одном кадре могут с различной яркостью подсвечиваться разные фрагменты. Самый с HDR является не совсем дешевым. Его стоимость - около 160 тысяч рублей. Эта модель - телевизор Sony. С HDR есть 55-дюймовый и 65-дюймовый экраны. К сожалению, бюджетные модели имеют недостаточную пиковую яркость, а подсветка в них не регулирует произвольные области матрицы. Также у них очень скромное количество передаваемых оттенков цветов.

Сложность использования старых моделей заключается в том, что эффект может быть противоположным тому, который задумал режиссер при съемке своего творения. Ведь совместно с колористами была разработана цветовая схема, а кадры были окрашены с использованием обширной палитры цветов, предоставленных специальным стандартом в кинематографе. Предыдущие модели телевизоров с таким стандартом не работают, так как не способны отобразить некоторые оттенки. Именно поэтому телевизионные версии фильмов смотрятся более бледно, чем должны.

Новые телевизоры с поддержкой HDR могут менять цветовую схему таким способом, как им захочется, применяя свои собственные алгоритмы, которые о видении режиссера не знают. По этой причине создатели придумали технологию, при которой совместно с видеосигналом передаются специальные метаданные, содержащие информацию с алгоритмами изменения картинки под телевизоры с функцией HDR. Теперь устройство знает, где необходимо осветлить, а где затемнить, а также то, в какие моменты нужно добавить какой-то оттенок. И если модель телевизора поддерживает такие возможности, то картинка будет выглядеть точно так, как хотел режиссер.

Контент скоро появится

На текущий момент времени телевизоры с HDR имеют ничтожно малое количество контента. Так, всего несколько названий предоставлено сервисами онлайн-видео, а также последний эпизод фильма «Звездные войны» снят и отредактирован в формате, похожем на HDR. Из-за этого может сформироваться мнение, что нет смысла в покупке телевизоров, поддерживающих расширенный динамический диапазон.

Однако это не так. Есть компании, которые предоставляют возможности для того, чтобы конвертировать видеоконтент в псевдо-HDR. Конечно, это не делается нажатием на одну кнопку, которая моментально в автоматическом режиме улучшит изображение без всякой посторонней помощи. Но есть набор утилит, которые во много раз облегчат работу, связанную с восстановлением задуманной режиссером и колористами цветовой схемы. А это значит, что со временем объемы контента высокого качества будут увеличиваться.

Варианты HDR

Так же как и с ранее выходившими технологиями HD и Blu-Ray, есть несколько мнений о том, как все должно быть реализовано. Поэтому HDR поделился на форматы. Самым распространенным является формат HDR10. Он поддерживается всеми телевизорами с HDR. В данном формате метаданные целиком присоединены к видеофайлу.

Следующий варианта - это Dolby Vision. Тут каждая сцена обрабатывается отдельно. Картинка из-за этого выглядит лучше. В России такой вариант поддерживается только телевизорами от LG. Проигрывателей с его поддержкой пока нет, так как современные модели слабы, и их процессоры не могут потянуть такую нагрузку. Владельцы же моделей с HDR10 с выходом обновлений получат обработку видео, приближенную к DV.

Требования

В 2016 году HDR-телевизоры стали массово появляться на рынке. Почти каждое устройство с поддержкой 4K может понимать этот формат. Но, к сожалению, понимать - это одно, а правильно отображать - совсем другое.

Идеальный вариант - это телевизор с OLED-матрицей и поддержкой 4K, который способен делать любой пиксель максимально ярким или же затемнять его. Подойдут и модели, обладающие ковровой подсветкой из светодиодов, которые индивидуально либо в группах регулируют яркость своих областей матрицы.

Обновление

Если ваш телевизор поддерживает технологию HDMI 2.0, то есть очень большая вероятность, что в ближайшее время будет получено программное обновление до нового стандарта, который нужен для того, чтобы передавать метаданные. Эти два стандарта полностью совместимы физически. Разница заключается лишь в способах программной обработки видеопотока.

Как это самое обновление получить, если оно не пришло автоматически? Необходимо зайти в настройки телевизора и выбрать пункт "Поддержка". Здесь должна быть возможность обновления, при выборе которой нужно будет подтвердить действие и выбрать загрузку по сети. Далее система сама отыщет новую прошивку и предложит ее установить.

Вывод

Как уже было сказано в начале статьи, большее число людей выберут полноцветную картинку, а не изображение с высоким разрешением. Это вполне логично. Ведь много пикселей - это, несомненно, хорошо, но еще лучше, когда пиксели хорошие. Список телевизоров с поддержкой HDR пока невелик. Такие модели есть у LG, Sony и Samsung.

Развитие технологии кажется значительно более перспективным, чем гонка за разрешением. На последних телевизионных выставках анонсированы новые модели, которые должны не только поддерживать высочайшее разрешение, но и давать высокую яркость, а также демонстрировать определенные уровни черного цвета и охватывать большое число оттенков. Нужно отметить, что формат HDR по умолчанию заявлен во множестве моделей, которые выйдут в 2017 году. Проблема может заключаться лишь в стандартах. Производителям контента и телевизоров нужно ее решать, и текущий год, судя по всему, будет посвящен именно этому.

Таким образом, мы выяснили, что такое HDR в телевизоре, для чего нужна эта технология, какие у нее преимущества и недостатки. Конечно, на сегодняшний день нельзя настоятельно рекомендовать любителям телевидения переходить на новые модели, так как технология все еще находится на стадии развития. Но, зная современные темпы развития, можно с уверенностью сказать, что через год HDR достигнет качественно иного уровня и все больше людей начнут приобретать телевизоры, поддерживающие расширенный диапазон. К этому времени производители контента как раз смогут произвести большое число фильмов и сериалов в формате HDR, и просмотр телевизора будет приносить еще большее любителям красивой картинки.

Как известно, широкий динамический диапазон - один из главных элементов кинематографического изображения.

Так сложилось потому, что большинство из нас, осознанно или нет, воспринимает определение «кинематографичный» как синоним «снятый на пленку». Пленочные кадры традиционно обладали более широким динамическим диапазоном, чем цифровые изображения. За исключением обращаемых фотоматериалов, но это совсем другая история.

До определенного момента, когда камеры, вроде , доказали, что широкий динамический диапазон возможен и при цифровой съемке, она ассоциировалась у нас с материалом низкого качества со множеством артефактов, в том числе и на ярких участках кадра.

За пять лет многое изменилось. Теперь меньше, чем за тысячу долларов, мы можем купить модели (например, ), демонстрирующие динамический диапазон, не сильно уступающий пленочному. Это дало режиссерам малобюджетного кино больше свободы, ведь они всегда стремились к качественному изображению, но у них просто не было денег на пленку.

Но одновременно у явления появились побочные эффекты.

В условиях, когда на динамический диапазон делают большой акцент, многие боятся жертвовать им на цветокоррекции, даже если речь идет об определенном стиле.

Вероятнее всего, это последствия подхода производителей камер к их маркетинговым кампаниям, которые вдолбили людям в голову, что широкий динамический диапазон равняется .

Но это не совсем так.

Конечно, при съемке важно сохранять как можно больше цветов, но вовсе не обязательно их все оставлять на постпродакшне. Наоборот, подобное стремление может дать результат, прямо противоположный кинематографическому.

Фильм - это не только то, что вы видите. Это еще и то, что от вас скрыто.

Часто высококонтрастное изображение с уменьшенным динамическим диапазоном лучше запоминается зрителю, обращает на себя внимание. Если вы видите каждую деталь на темных и светлых участках, пространства для воображения уже не остается. Часто такие кадры выглядят искусственно и неестественно. Или, что еще хуже, скучно.

Посмотрите на два снимка, которые я сделал на в RAW. Первое я отредактировал таким образом, чтобы на нем сохранился весь динамический диапазон. Второе же я стремился сделать интереснее, пусть даже это стоило мне многих деталей изображения.

Конечно, все это дело вкуса, но я всегда выберу второе. Гораздо интереснее, когда ты не видишь сразу все и используешь динамический диапазон - или его нехватку - чтобы погрузить зрителя в кадр.

По аналогии вспомним глубину резкости.

В некоторых случаях отлично работает большая глубина резкости (зритель получает возможность одинаково четко воспринимать изображение целиком), но чаще выборочный фокус все же предпочтительнее, так как помогает направить взгляд к действительно важной части кадра. Это гораздо ближе к человеческому восприятию.

Многие режиссеры и операторы понимают это, однако далеко не все работают с динамическим диапазоном по той же логике.

Возможно, переизбыток широкого динамического диапазона в современном кинематографе привел к тому, что многие начали пытаться его сохранить во что бы то ни стало. Они буквально помешаны на том, чтобы технически передать все детали в тенях и светлых участках, забывая самый главный вопрос: «Как зритель воспримет это изображение?».

Часто при просмотре современных фильмов возникает ощущение, что перед тобой - необработанный материал со съемок. Все потому, что авторы используют контраст с осторожностью, чтобы не повредить динамическому диапазону, и в результате получают плоское изображение.

Это не значит, что подобный стиль не имеет права на существование. При выборе эстетической составляющей нет верных или неверных решений. Однако все они должны в первую очередь служить истории.

Спросите себя: передает ли подобное плоское изображение нужную вам атмосферу? Если да - отлично. Если нет - не пытайтесь продемонстрировать максимальный динамический диапазон просто потому, что ваша камера на это способна. Да, это важное качество сенсора современных камер, и оно не раз влияло на мой выбор при покупке. Но в первую очередь это нужно для того, чтобы на постпродакшне у меня был выбор.

Допустим, я собираюсь провести тщательную цветокоррекцию. Это значит, что изображение с широким динамическим диапазоном позволит мне оставить именно те цвета и детали, которые я хочу видеть в результате. Даже если в финальном материале будут непроглядные тени и засвеченные участки, которые я мог бы заснять даже на камеру с восемью ступенями, я все равно предпочту 13 или 14, чтобы поэкспериментировать.

Все дело в выборе.

В качестве заключения скажу вот что. Хорошее кино рождается из интересных решений. Не позволяйте производителям камер указывать вам, что такое кинематографичное изображение. Прислушивайтесь к себе и решайте сами, что вы считаете для себя привлекательным. Если вам нравится плоское изображение - отлично. Но не менее интересным может быть и кадр с небольшим динамическим диапазоном, особенно если того требует история.

by Cal Redback

Динамический диапазон является одним из многих параметров, на которые обращают внимание все, кто покупает или обсуждает фотокамеру. В различных обзорах часто используется этот термин наряду с параметрами шума и разрешения матрицы. Что же обозначает этот термин?

Не должно быть секретом, что динамический диапазон фотоаппарата - это способность камеры к распознаванию и одновременной передаче светлых и темных деталей снимаемой сцены.

Если говорить более детально, то динамический диапазон камеры - это охват тех тонов, которые она может распознать между черным и белым. Чем больше динамический диапазон, тем больше этих тонов могут быть записаны и тем больше деталей может быть извлечено из темных и светлых участков снимаемой сцены.

Динамический диапазон обычно измеряется в значениях . Хотя вроде бы и очевидно, что важным является возможность захватить наибольшее, насколько это возможно, число тонов, для большинства фотографов приоритетной остается цель - попытаться создать приятный образ. А это как раз не означает, что необходимо, чтобы была видна каждая деталь изображения. Например, если темные и светлые детали изображения будут разбавлены серыми полутонами, а не черными или белыми, то вся картинка будет иметь очень низкую контрастность и выглядеть довольно скучно и нудно. Ключевыми являются границы динамического диапазона фотокамеры и понимание как можно использовать его для создания фотографий с хорошим уровнем контрастности и без т.н. провалов в светах и тенях.

Что видит камера?

Каждый пиксель в изображении представляет один фотодиод на сенсоре камеры. Фотодиоды собирают фотоны света и превращают их в электрический заряд, который затем преобразуется в цифровые данные. Чем больше фотонов, которые собираются, тем больше электрический сигнал и тем ярче будет в изображении пиксель. Если фотодиод не собирает никаких фотонов света, то никакой электрический сигнал не будет создан и пиксель будет черным.

датчик 1 дюйм

датчик APS-C

Тем не менее, датчики бывают различных размеров и разрешений, а также при их производстве используются различные технологии, которые влияют на размер фотодиодов каждого датчика.

Если рассматривать фотодиоды как ячейки, то можно провести аналогию с наполнением. Пустой фотодиод будет воспроизводить черный пиксель, в то время как 50% от полного покажет серый цвет и заполненный на 100% будет белым.

Скажем, мобильные телефоны и компактные камеры имеют очень маленькие датчики изображения по сравнению с DSLR. Это означает, что они также имеют гораздо меньшие фотодиоды на датчике. Таким образом, даже при том, что и компактная камера, и DSLR может иметь датчик 16-миллионов пикселей, динамический диапазон будет отличаться.

Чем больше фотодиод, тем больше его способность хранить фотонов света по сравнению с меньшим размером фотодиода в меньшем датчике. Это означает, что чем больше физический размер, тем диод может лучше записывать данные в светлых и темных областях

Наиболее распространена аналогия, что каждый фотодиод похож на ведро, которое собирает свет. Представьте себе, что 16 миллионов ведер занимаются сбором света по сравнению с 16 млн. чашек. Ведра имеют больший объем, за счет которого способны собрать большее количество света. Чашки гораздо меньшей емкости, поэтому при наполнении могут передать фотодиоду гораздо меньший по мощности , соответственно пиксель может воспроизводиться с гораздо меньшим количеством световых фотонов, чем получается от более крупных фотодиодов.

Что это означает на практике? Камеры с меньшими размерами датчиков, такие как в смартфонах или потребительские компакты, имеют меньший динамический диапазон, чем даже самый компактный фотоаппарат из системных камер или зеркалок, которые используют большие датчики. Тем не менее, важно помнить, что влияет на ваши изображения общий уровень контраста в сцене, которую вы фотографируете.

В сцене с очень низкой контрастностью разница в тональном диапазоне, захваченном камерой мобильного телефона и DSLR, может быть мала или вообще не различима. Датчики обеих камер способны захватывать полный диапазон тонов сцены, если свет выставлен правильно. Зато при съемке высококонтрастных сцен будет очевидным, что, чем больше динамический диапазон, тем большее количество полутонов он способен передать. И так как более крупные фотодиоды имеют лучшую способность при записи более широкого диапазона тонов, следовательно, и имеют больший динамический диапазон.

Давайте посмотрим разницу на примере. На фотографиях ниже можно наблюдать отличия в передаче полутонов камерами с разным динамическим диапазоном при одинаковых условиях высокой контрастности освещения.

Что такое разрядность изображения?

Разрядность тесно связана с динамическим диапазоном и диктует камере какое количество тонов может быть воспроизведено в изображении. Хотя цифровые снимки полноцветные по умолчанию, и они не могут быть сняты не цветными, датчик камеры на самом деле не записывает непосредственно цвет, он просто записывает цифровое значение для количества света. Например, 1-битное изображение содержит самую простую "инструкцию" для каждого пикселя, поэтому в данном случае есть только два возможных конечных результата: черный или белый пиксель.

Битное изображение состоит уже из четырех различных уровней (2×2). Если оба бита равны - это белый пиксель, если оба выключены, то это черный. Есть также возможность иметь два варианта, что на изображении будет соответственное отражение еще двух тонов. Двухбитное изображение дает черно-белый цвет плюс два оттенка серого.

Если изображение 4-битное, соответственно существует 16 возможных комбинаций в получении различных результатов (2x2x2x2).

Когда дело доходит до обсуждения цифровых изображений и датчиков, чаще всего можно услышать о 12, 14 и 16-битных датчиках, каждый из которых способен записывать 4096, 16384 и 65536 различных тонов соответственно. Чем больше битовая глубина, тем большее количество значений яркости или тона может быть записано с помощью датчика.

Но и тут кроется подвох. Не все камеры способны воспроизводить файлы с такой глубиной цвета, которую может позволить создать датчик. Например, на некоторых камерах Nikon исходные файлы могут быть как 12 бит, так и 14 бит. Дополнительные данные в 14-битных изображениях означают, что в файлах, как правило, больше деталей в светлых и темных областях. Так как размер файла больше, то и времени на обработку и сохранение тратится больше. Сохранение необработанных изображений 12-битных файлов происходит быстрее, но тональный диапазон изображения из-за этого сжимается. Это означает, что некоторые очень темные серые пиксели будут отображаться как черные, а некоторые светлые тона могут выглядеть как .

Когда происходит съемка в формате JPEG, файлы сжимаются еще больше. Изображения JPEG являются 8-разрядными файлами, состоящими из 256 различных значений яркости, поэтому многие из мелких деталей, доступных для редактирования в исходных файлах, снятых в , полностью теряются в файле JPEG.

Таким образом, если у фотографа имеется возможность получить наиболее полную отдачу от всего возможного динамического диапазона фотокамеры, то лучше сохранять исходники в "сыром" виде - с максимально возможной битовой глубиной. Это означает, что снимки будут хранить наибольшее количество информации о светлых и темных областях, когда дело коснется редактирования.

Чем понимание динамического диапазона фотокамеры важно для фотографа? Исходя из имеющейся информации, можно сформулировать несколько прикладных правил, придерживаясь которых, повышается вероятность получения хороших и качественных изображений в трудных условиях для фотосъемки и избегать серьезных ошибок и недочетов.

  • Лучше снимок сделать более светлым, чем перетемнить его. Детали в светах "вытягиваются" проще, потому что они не такие шумные, как детали в тени. Безусловно, что правило действует при условиях более-менее правильно выставленной экспозиции.
  • При замере экспозиции по темным областям лучше жертвовать детализацией в тенях, более тщательно проработав света.
  • При большой разнице в яркости отдельных участках снимаемой композиции экспозицию следует замерять по темной части. При этом желательно выравнивать по возможности общую яркость поверхности изображения.
  • Оптимальное время для съемки считается утреннее или вечернее, когда свет распределяется равномерней, чем в полдень.
  • Портретная съемка пройдет лучше и легче, если использовать дополнительное освещение с помощью выносных вспышек для фотокамеры (например, купить современные накамерные вспышки http://photogora.ru/cameraflash/incameraflash).
  • При прочих равных следует пользоваться наименьшим из возможных значением ISO.
16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.