Современные спутники земли. Космические аппараты

В 1957 году под руководством С.П. Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

Искусственный спутник Земли (ИСЗ ) - это космический аппарат, вращающийся вокруг Земли по геоцентрической орбите. - траектория движения небесного тела по эллиптической траектории вокруг Земли. Один из двух фокусов эллипса, по которому движется небесное тело, совпадает с Землёй. Для того, чтобы космический корабль оказался на этой орбите, ему необходимо сообщить скорость, которая меньше второй космической скорости, но не меньше чем первая космическая скорость. Полёты ИСЗ выполняются на высотах до нескольких сотен тысяч километров. Нижнюю границу высоты полёта ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полёта может составлять от полутора часов до нескольких суток.

Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах. Геостациона́рная орби́та (ГСО) - круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. Движение искусственного спутника Земли по геостационарной орбите.

Спутник-1 - первый искусственный спутник Земли, первый космический аппарат, запущен на орбиту в СССР 4 октября 1957 года.

Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (позже это место получило название космодром Байконур) на ракете-носителе «Спутник» (Р-7).

Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко, В. И. Лапко, Б. С. Чекунов, А. В. Бухтияров и многие другие.

Дата запуска первого искусственного спутника Земли считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава со стыковочными шпангоутами, соединёнными между собой 36 болтами. Герметичность стыка обеспечивала резиновая прокладка. В верхней полуоболочке располагались две антенны, каждая из двух штырей по 2,4 м и по 2,9 м. Так как спутник был неориентирован, то четырёхантенная система давала равномерное излучение во все стороны.

Внутри герметичного корпуса были размещены блок электрохимических источников; радиопередающее устройство; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса первого спутника: 83,6 кг.

История создания первого спутника

13 мая 1946 г. Сталин подписал постановление о создании в СССР ракетной отрасли науки и промышленности. В августе С. П. Королёв был назначен главным конструктором баллистических ракет дальнего действия.

Но еще в 1931 году в СССР была создана Группа изучения реактивного движения, которая занималась конструированием ракет. В этой группе работали Цандер, Тихонравов, Победоносцев, Королёв . В 1933 году на базе этой группы был организован Реактивный институт, который продолжил работы по созданию и совершенствованию ракет.

В 1947 году в Германии были собраны и прошли лётные испытания ракеты Фау-2, они и положили начало советским работам по освоению ракетной техники. Однако Фау-2 воплотила в своей конструкции идеи гениев-одиночек Константина Циолковского, Германа Оберта, Роберта Годдарда.

В 1948 г. на полигоне Капустин Яр проводились уже испытания ракеты Р-1, которая являлась копией Фау-2, изготовляемой полностью в СССР. Затем появились Р-2 с дальностью полета до 600 км, эти ракеты были приняты на вооружение с 1951 г. А Создание ракеты Р-5 с дальностью до 1200 км стало первым отрывом от техники Фау-2. Эти ракеты прошли испытания в 1953 г, и сразу же начались исследования использования их как носителя ядерного оружия. 20 мая 1954 г. правительство выдало постановление о разработке двухступенчатой межконтинентальной ракеты Р-7. А уже 27 мая Королёв направил докладную министру оборонной промышленности Д. Ф. Устинову о разработке ИСЗ и возможности его запуска с помощью будущей ракеты Р-7.

Запуск!

В пятницу, 4 октября, в 22 часа 28 минут 34 секунды по московскому времени был совершён успешный запуск . Через 295 секунд после старта ПС-1 и центральный блок ракеты весом 7,5 тонны были выведены на эллиптическую орбиту высотой в апогее 947 км, в перигее 288 км. На 314,5 секунде после старта произошло отделение Спутника и он подал свой голос. «Бип! Бип!» - так звучали его позывные. На полигоне их ловили 2 минуты, потом Спутник ушёл за горизонт. Люди на космодроме выбежали на улицу, кричали «Ура!», качали конструкторов и военных. И ещё на первом витке прозвучало сообщение ТАСС: «…В результате большой напряжённой работы научно-исследовательских институтов и конструкторских бюро создан первый в мире искусственный спутник Земли…»

Только после приёма первых сигналов Спутника поступили результаты обработки телеметрических данных и выяснилось, что лишь доли секунды отделяли от неудачи. Один из двигателей «запаздывал», а время выхода на режим жёстко контролируется и при его превышении старт автоматически отменяется. Блок вышел на режим менее чем за секунду до контрольного времени. На 16-й секунде полёта отказала система управления подачи топлива, и из-за повышенного расхода керосина центральный двигатель отключился на 1 секунду раньше расчётного времени. Но победителей не судят! Спутник летал 92 дня, до 4 января 1958 года, совершив 1440 оборотов вокруг Земли (около 60 млн. км), а его радиопередатчики работали в течение двух недель после старта. Из-за трения о верхние слои атмосферы спутник потерял скорость, вошёл в плотные слои атмосферы и сгорел вследствие трения о воздух.

Официально «Спутник-1» и «Спутник-2», Советский Союз запускал в соответствии с принятыми на себя обязательствами по Международному Геофизическому Году. Спутник излучал радиоволны на двух частотах 20,005 и 40,002 МГц в виде телеграфных посылок длительностью 0,3 с, это позволяло изучать верхние слои ионосферы - до запуска первого спутника можно было наблюдать только за отражением радиоволн от областей ионосферы, лежащих ниже зоны максимальной ионизации ионосферных слоёв.

Цели запуска

  • проверка расчётов и основных технических решений, принятых для запуска;
  • ионосферные исследования прохождения радиоволн, излучаемых передатчиками спутника;
  • экспериментальное определение плотности верхних слоёв атмосферы по торможению спутника;
  • исследование условий работы аппаратуры.

Несмотря на то, что на спутнике полностью отсутствовала какая-либо научная аппаратура, изучение характера радиосигнала и оптические наблюдения за орбитой позволили получить важные научные данные.

Другие спутники

Второй страной, запустившей ИСЗ, стали США: 1 февраля 1958 года был запущен искусственный спутник земли Эксплорер-1 . Он находился на орбите до марта 1970 г., но прекратил радиопередачи еще 28 февраля 1958 г. Первый американский искусственный спутник Земли был запущен командой Брауна.

Вернер Магнус Максимилиан фон Браун - немецкий, а с конца 1940-х годов американский конструктор ракетно-космической техники, один из основоположников современного ракетостроения, создатель первых баллистических ракет. В США он считается «отцом» американской космической программы. Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника (руководство США хотело, чтобы спутник был запущен военными), поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда». Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С. Масса спутника была ровно в 10 раз меньше массы первого советского ИСЗ - 8,3 кг. На нем был установлен счетчик Гейгера и датчик метеорных частиц. Орбита «Эксплорера» была заметно выше орбиты первого ИСЗ .

Следующие страны, запустившие спутники - Великобритания, Канада, Италия - запустили свои первые ИСЗ в 1962, 1962, 1964 гг. на американских ракетах-носителях . А третьей страной, выведшей первый ИСЗ на своей ракете-носителе, стала Франция 26 ноября 1965 г.

Сейчас ИСЗ запускаются более чем 40 странами (а также отдельными компаниями) с помощью как собственных ракет-носителей (РН), так и предоставляемых в качестве пусковых услуг другими странами и межгосударственными и частными организациями.

Искусственные спутники Земли

Ведение. Искусственные спутники Земли - это космические аппараты, выведенные на околоземные орбиты. Форма орбит ИСЗ зависит от скорости движения спутника и его расстояния от центра Земли и представляет собой окружность или эллипс. Кроме того, орбиты различаются наклоном по отношению к плоскости экватора, а также направлением вращения. На форму орбит ИСЗ влияет несферичность гравитационного поля Земли, гравитационные поля Луны, Солнца и других небесных тел, а также аэродинамические силы, возникающие при движении ИСЗ в верхних слоях атмосферы, и другие причины.

Выбор формы орбиты ИСЗ во многом зависит от его назначения и особенностей выполняемых им задач.

Назначение ИСЗ. В зависимости от решаемых задач ИСЗ подразделяют на научно-исследовательские, прикладные и военные.

Научно-исследовательские ИСЗслужат для изучения Земли, небесных тел и космического пространства. С их помощью проводятся геофизические, астрономические, геодезические, биологические и др. исследования. Орбиты таких спутников разнообразны: от почти круговых на высоте 200...300 км до вытянутых эллиптических с высотой в апогее до 500 тыс. км. Это ИСЗ «Прогноз», «Электрон», «Протон» и др., выведенные на орбиты для изучения процессов солнечной активности и их влияния на магнитосферу Земли, изучения космических лучей и взаимодействия с веществом частиц сверхзвуковых энергий.

К прикладным ИСЗотносятся связные (телекоммуникационные), метеорологические, геодезические, навигационные, океанографические, геологические, спасательно-поисковые и другие.

Особое значение имеют связные ИСЗ - «Молния» (рис. 2.5), «Радуга», «Экран», «Горизонт», предназначенные для ретрансляции телевизионных программ и обеспечения дальней радиосвязи. Для них используются эллиптические синхронные орбиты с большим эксцентриситетом. Для непрерывной связи с регионом следует иметь три таких спутника. ИСЗ «Радуга», «Экран» и «Горизонт» также имеют круговые экваториальные геостационарные орбиты высотой 35500 - 36800 км, что обеспечивает круглосуточную связь через сеть наземных приемных телевизионных станций «Орбита».

Все эти спутники имеют динамическую стабилизацию относительно Земли и Солнца, что позволяет надежно ретранслировать получаемые сигналы, а также ориентировать панели солнечных батарей (СБ) на Солнце.

Рис. 2.5. Схема связного искусственного спутника Земли «Молния»:

1 - датчики системы ориентации; 2 - панели СБ; 3 - радиоприемники и передатчики;
4 - антенны; 5 - баллоны гидразина; 6 - двигатель коррекции орбиты; 7 - радиаторы

Метеорологические ИСЗ типа «Метеор» выводятся на круговые орбиты высотой 900 км. Они регистрируют состояние атмосферы и облачности, обрабатывают полученную информацию и передают ее на Землю (за один оборот ИСЗ обследует до 20% площади земного шара).

Геодезические ИСЗ предназначены для картографирования местности и привязки объектов на местности с учетом ее рельефа. В состав бортового комплекса таких ИСЗ входит: аппаратура, позволяющая точно фиксировать их положение в пространстве относительно наземных контрольных пунктов и определять расстояние между ними.

Навигационные ИСЗ типа «Цикада» и «Ураган» предназначены для глобальной навигационной спутниковой системы «Глонасс», «Космос-1000» (Россия), «Навстар» (США) - для обеспечения навигации морских судов, самолетов и других движущихся объектов. С помощью навигационно-радиотехнических систем судно или самолет может определить свое положение относительно нескольких ИСЗ (или в нескольких точках орбиты ИСЗ). Для навигационных ИСЗ предпочтительными являются полярные орбиты, т.к. они охватывают всю поверхность Земли.

Военные ИСЗ используются для обеспечения связи, управления войсками, осуществления различных видов разведки (наблюдения за территориями, военными объектами, запусками ракет, перемещениями кораблей и др.), а также для навигации самолетов, ракет, кораблей, подводных лодок и др.

Бортовое оснащение ИСЗ. Состав бортового оснащения ИСЗ определяется назначением ИСЗ.

В состав оснащения могут входить различные приборы и устройства для наблюдения. Эти приборы в соответствии с назначением могут работать на разных физических принципах. Например, на ИСЗ могут быть установлены: оптический телескоп, радиотелескоп, лазерный отражатель, фотоаппаратура с работой в видимом и инфракрасном диапазонах и т.п.

Для обработки результатов наблюдений и их анализа на борту ИСЗ могут устанавливаться сложные информационно-аналитические комплексы, использующие вычислительную технику и другие средства. Полученная и обработанная на борту информация, обычно в виде кодов, передается на Землю с помощью специальных бортовых радиокомплексов, работающих в различных диапазонах радиочастот. В составе радиокомплекса может быть несколько антенн различного типа и назначения (параболические, спиральные, штыревые, рупорные и др.).

Для управления движением ИСЗ и обеспечения функционирования его бортовой аппаратуры на борту ИСЗ устанавливается бортовой комплекс управления, который работает автономно (в соответствии с программами, имеющимися на борту), а также по командам, получаемым от наземного комплекса управления.

Для обеспечения электрической энергией бортового комплекса, а также всех бортовых приборов и устройств на ИСЗ устанавливаются панели солнечных батарей, собранных из полупроводниковых элементов, либо топливные химические элементы, либо ядерные энергетические установки.

Двигательные установки. На некоторых ИСЗ имеются двигательные установки, применяемые для коррекции траектории либо стабилизации вращением. Так, с целью увеличения времени существования низкоорбитных ИСЗ на них периодически включаются двигатели, переводящие спутники на более высокую орбиту.

Система ориентации ИСЗ. На большинстве ИСЗ применяется система ориентации, обеспечивающая фиксированное положение осей по отношению к поверхности Земли или каких-либо небесных объектов (например, для изучения космического пространства с помощью телескопов и других приборов). Ориентация осуществляется с помощью микроракетных двигателей или реактивных сопел, расположенных на поверхности ИСЗ или выступающих конструкциях (панелях, фермах и др.). Для стабилизации ИСЗ на средних и высоких орбитах требуются очень малые тяги (0,01... 1 Н).

Конструктивные особенности. ИСЗ выводятся на орбиты под специальными обтекателями, которые воспринимают все аэродинамические и тепловые нагрузки. Поэтому форма ИСЗ и конструктивные решения определяются функциональной целесообразностью и допустимыми габаритами. Обычно ИСЗ имеют моноблочные, многоблочные или ферменные конструкции. Часть оборудования размещается в термостатированных герметичных отсеках.



Автоматические межпланетные станции

Введение. Автоматические межпланетные станции (АМС) предназначены для полетов к Луне и планетам Солнечной системы. Их особенности определяются большой удаленностью функционирования от Земли (вплоть до выхода за сферу действия ее гравитационного поля) и временем полета (может измеряться годами). Все это предъявляет особые требования к их конструкции, управлению, энергоснабжению и др.

Общий вид и типовая компоновка АМС приведена на примере автоматической межпланетной станции «Вега» (рис. 2.6)

Рис. 2.6. Общий вид автоматической межпланетной станции «Вега»:

1 - спускаемый аппарат; 2 - орбитальный аппарат; 3 - солнечная батарея; 4 - блоки научной аппаратуры; 5 - малонаправленная антенна; 6 - остронаправленная антенна

Полеты АМС начались в январе 1959 года выводом на орбиту советской АМС «Луна-1», совершившей полет к Луне. В сентябре того же года «Луна-2» достигла поверхности Луны, а в октябре «Луна-3» сфотографировала невидимую сторону планеты, передав эти изображения на Землю.

В 1970 - 1976 годах с Луны на Землю были доставлены образцы лунного грунта, а на Луне успешно работали «Луноходы». Эти достижения существенно опередили американские исследования Луны автоматическими аппаратами.

С помощью серии АМС, запущенных в сторону Венеры (начиная с 1961 года) и Марса (с 1962 года), были получены уникальные данные о структуре и параметрах этих планет и их атмосфере. В результате полетов АМС установлено, что давление атмосферы Венеры составляет более 9 МПа (90 атм,), а температура 475°С; получена панорама поверхности планеты. Эти данные передавались на Землю при помощи сложной комбинированной конструкции АМС , одна из частей которой спускалась на поверхность планеты, а вторая, выведенная на орбиту спутника, принимала информацию и транслировала ее на Землю. Аналогичные сложные исследования проводились и на Марсе. В эти же годы богатая научная информация была получена на Земле с АМС «Зонд», на которых отрабатывались многие конструктивные решения для последующих АМС, в том числе по возвращении их на Землю.

Рис. 2.7. Траектория полета АМС «Вега» к планете Венера и комете Галлея

Полеты американских АМС «Рейнджер», «Сервейер», «Маринер», «Викинг» продолжили исследования Луны, Венеры и Марса («Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения, рис. 2.9), а АМС «Пионер», «Вояджер» и «Галилей» достигли дальних планет солнечной системы: Юпитера, Сатурна, Урана, Нептуна, передав уникальные снимки и данные об этих планетах.

Рис. 2.9 «Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения:

1 - малонаправленная антенна; 2 - двигатель маневрирования; 3 - топливный бак (2 шт.); 4 - прибор ориентации на звезду Канопус; 5 - баллон в системе наддува двигательной установки; 6 -жалюзи системы терморегулирования; 7 - инфракрасный интерферометр-спектрометр; 8 - телевизионная камера с малым углом обзора;
9 - ультрафиолетовый спектрометр; 10 -телевизионная камера большим углом обзора; 11 - инфракрасный радиометр; 12 - остронаправленная антенна; 13 - датчики захвата Солнца (4 шт.); 14 - датчик слежения за Солнцем; 15 - антенна с умеренным коэффициентом усиления; 16 - панель солнечных элементов (4 шт.).

Орбиты AMС. Для полетов АМС к планетам солнечной системы им должна быть сообщена скорость, близкая ко второй космической скорости или даже превышающая ее, при этом орбита приобретает форму параболы или гиперболы. При приближении к планете назначения АМС попадает в зону ее гравитационного поля (грависферы), которое изменяет форму орбиты. Таким образом, траектория АМС может состоять из нескольких участков, форма которых определяется законами небесной механики.

Бортовое оснащение АМС. На АМС, предназначенных для исследования планет, в зависимости от решаемых задач устанавливаются разнообразнейшие приборы и устройства: телевизионные камеры с малым и большим углом обзора, фотоаппараты и фотополяриметры, ультрафиолетовые спектрометры и инфракрасные интерферометры, магнитометры, детекторы космических лучей и заряженных частиц, приборы для измерения характеристик плазмы, телескопы и др.

Для выполнения запланированных исследований некоторые научные приборы могут располагаться в корпусе АМС, другие выносятся из корпуса с помощью ферм или штанг, устанавливаются на сканирующих платформах, поворачиваются относительно осей.

Для передачи полученной и обработанной информации на Землю на АМС устанавливается специальная приемо-передающая радиоаппаратура с остронаправленной параболической антенной, а также бортовой управляющий комплекс с вычислительным устройством, формирующий команды для работы приборов и систем, находящихся на борту.

Для обеспечения бортового управляющего комплекса и приборов электроэнергией на АМС могут применяться панели солнечных батарей или ядерные радиоизотопные термоэлектрические генераторы (необходимые при длительных полетах к дальним планетам).

Особенности конструкции АМС. Несущая конструкция АМС имеет обычно легкий ферменный каркас (платформу), на котором крепится все оборудование, системы и отсеки. Для электронного и другого оборудования применяются герметичные отсеки с многослойной теплоизоляцией и системой терморегулирования.

АМС должны быть оснащены системой ориентации по трем осям с отслеживанием определенных ориентиров (например, Солнца, звезды Канопус). Пространственная ориентация АМС и маневры коррекции траектории осуществляются с помощью микроракетных двигателей или сопел, работающих на горячих или холодных газах.

АМС могут иметь двигательную установку орбитального маневрирования для корректирования траектории либо для перевода АМС на орбиту планеты или ее спутника. В последнем случае конструкция АМС значительно усложняется, т.к. для посадки станции на поверхность планет требуется ее торможение. Оно осуществляется с помощью тормозной двигательной установки либо за счет атмосферы планеты (если ее плотность достаточна для торможения, как на Венере). При торможении и посадке возникают значительные нагрузки на конструкцию и приборы, поэтому спускаемую часть обычно отделяют от АМС, придавая ей соответствующую прочность и защищая от нагрева и других нагрузок.

Спускаемая часть АМС может иметь на борту различную научно-исследовательскую аппаратуру, средства для ее передвижения по поверхности планеты (например, «Луноход» на АМС «Луна-17») и даже возвращаемый на Землю аппарат с капсулой грунта (АМС «Луна-16»). В последнем случае на возвращаемом аппарате устанавливается дополнительная двигательная установка, обеспечивающая разгон и коррекцию траектории возвращаемого аппарата.

Советские искусственные спутники Земли. Первый искусственный спутник Земли.

Искусственные Спутники Земли (ИСЗ), космические летательные аппараты, выведенные на орбиты вокруг Земли и предназначенные для решения научных и прикладных задач. Запуск первого ИСЗ, ставшего первым искусственным небесным телом, созданным человеком, был осуществлен в СССР 4 октября и явился результатом достижений в области ракетной техники, электроники, автоматического управления, вычислительной техники, небесной механики и др. разделов науки и техники. С помощью этого ИСЗ впервые была измерена плотность верхней атмосферы (по изменениям его орбиты), исследованы особенности распространения радиосигналов в ионосфере , проверены теоретические расчёты и основные технические решения, связанные с выведением ИСЗ на орбиту. 1 февраля на орбиту был выведен первый американский ИСЗ «Эксплорер-1», а несколько позже самостоятельные запуски ИСЗ произвели и другие страны: 26 ноября 1965 - Франция (спутник «А-1»), 29 ноября 1967 - Австралия («ВРЕСАТ-1»), 11 февраля 1970 - Япония («Осуми»), 24 апреля 1970 - КНР («Китай-1»), 28 октября 1971 - Великобритания («Просперо»). Некоторые спутники, изготовленные в Канаде, Франции, Италии, Великобритании и др. странах, запускались (с 1962) с помощью американских ракет-носителей. В практике космических исследований широкое распространение получило международное сотрудничество. Так, в рамках научно-технического сотрудничества социалистических стран запущен ряд ИСЗ. Первый из них - «Интеркосмос-1» - был выведен на орбиту 14 октября 1969. Всего к 1973 запущено свыше 1300 ИСЗ различного типа, в том числе около 600 советских и свыше 700 американских и др. стран, включая пилотируемые космические корабли-спутники и орбитальные станции с экипажем.

Общие сведения об ИСЗ.

Советские искусственные спутники Земли. «Электрон».

В соответствии с международной договорённостью космический аппарат называется спутником, если он совершил не менее одного оборота вокруг Земли. В противном случае он считается ракетным зондом, проводившим измерения вдоль баллистической траектории, и не регистрируется как спутник. В зависимости от задач, решаемых с помощью ИСЗ, их подразделяют на научно-исследовательские и прикладные. Если на спутнике установлены радиопередатчики, та или иная измерительная аппаратура, импульсные лампы для подачи световых сигналов и т. п., его называют активным. Пассивные ИСЗ предназначены обычно для наблюдений с земной поверхности при решении некоторых научных задач (к числу таких ИСЗ принадлежат спутники-баллоны, достигающие в диаметре нескольких десятков м ). Научно-исследовательские ИСЗ служат для исследований Земли, небесных тел, космического пространства. К их числу относятся, в частности, геофизические спутники , геодезические спутники , орбитальные астрономические обсерватории и др. Прикладными ИСЗ являются связи спутники , метеорологические спутники , ИСЗ для исследования земных ресурсов, навигационные спутники , спутники технического назначения (для исследования воздействия космических условий на материалы, для испытаний и отработки бортовых систем) и др. ИСЗ, предназначенные для полёта людей, называются пилотируемыми кораблями-спутниками. ИСЗ на экваториальной орбите, лежащей вблизи плоскости экватора, называются экваториальными, ИСЗ на полярной (или приполярной) орбите, проходящей вблизи полюсов Земли, - полярными. ИСЗ, выведенные на круговую экваториальную орбиту, удалённую на 35860 км от поверхности Земли, и движущиеся в направлении, совпадающем с направлением вращения Земли, «висят» неподвижно над одной точкой земной поверхности; такие спутники называются стационарными. Последние ступени ракет-носителей, головные обтекатели и некоторые другие детали, отделяемые от ИСЗ при выводе на орбиты, представляют собой вторичные орбитальные объекты; их обычно не называют спутниками, хотя они обращаются по околоземным орбитам и в ряде случаев служат объектами наблюдений для научных целей.

Зарубежные искусственные спутники Земли. «Эксплорер-25».

Зарубежные искусственные спутники Земли. «Диадем-1».

В соответствии с международной системой регистрации космических объектов (ИСЗ, космических зондов и др.) в рамках международной организации КОСПАР в 1957-1962 космические объекты обозначались годом запуска с добавлением буквы греческого алфавита, соответствующей порядковому номеру запуска в данном году, и арабской цифры - номера орбитального объекта в зависимости от его яркости или степени научной значимости. Так, 1957a2 - обозначение первого советского ИСЗ, запущенного в 1957; 1957a1 - обозначение последней ступени ракеты-носителя этого ИСЗ (ракета-носитель была более яркой). Поскольку количество запусков возрастало, начиная с 1 января 1963 космические объекты стали обозначать годом запуска, порядковым номером запуска в данном году и заглавной буквой латинского алфавита (иногда также заменяемой порядковым числом). Так, ИСЗ «Интеркосмос-1» имеет обозначение: 1969 88А или 1969 088 01. В национальных программах космических исследований серии ИСЗ часто имеют также собственные названия: «Космос» (СССР), «Эксплорер» (США), «Диадем» (Франция) и др. За рубежом слово «спутник» до 1969 использовалось только применительно к советским ИСЗ. В 1968-69 при подготовке международного многоязычного космонавтического словаря достигнута договоренность, согласно которой термин «спутник» применяется к ИСЗ, запущенным в любой стране.

Советские искусственные спутники Земли. «Протон-4».

В соответствии с разнообразием научных и прикладных задач, решаемых с помощью ИСЗ, спутники могут иметь различные размеры, массу, конструктивные схемы, состав бортового оборудования. Например, масса наименьшего ИСЗ (из серии «ЕРС») - всего 0,7 кг ; советский ИСЗ «Протон-4» имел массу около 17 т . Масса орбитальной станции «Салют» с пристыкованным к ней космическим кораблём «Союз» была свыше 25 т . Наибольшая масса полезного груза, выведенного на орбиту ИСЗ, составляла около 135 т (американский космический корабль «Аполлон» с последней ступенью ракеты-носителя). Различают автоматические ИСЗ (научно-исследовательские и прикладные), на которых работа всех приборов и систем управляется командами, поступающими либо с Земли, либо из бортового программного устройства, пилотируемые корабли-спутники и орбитальные станции с экипажем.

Для решения некоторых научных и прикладных задач необходимо, чтобы ИСЗ был определённым образом ориентирован в пространстве, причём вид ориентации определяется главным образом назначением ИСЗ или особенностями установленного на нём оборудования. Так, орбитальную ориентацию, при которой одна из осей постоянно направлена по вертикали, имеют ИСЗ, предназначенные для наблюдений объектов на поверхности и в атмосфере Земли; ИСЗ для астрономических исследований ориентируются на небесные объекты: звёзды, Солнце. По команде с Земли или по заданной программе ориентация может изменяться. В некоторых случаях ориентируется не весь ИСЗ, а лишь отдельные его элементы, например остронаправленные антенны - на наземные пункты, солнечные батареи - на Солнце. Для того чтобы направление некоторой оси спутника сохранялось неизменным в пространстве, ему сообщают вращение вокруг этой оси. Для ориентации используют также гравитационные, аэродинамические, магнитные системы - так называемые пассивные системы ориентации, и системы, снабженные реактивными или инерционными управляющими органами (обычно на сложных ИСЗ и космических кораблях), - активные системы ориентации. ИСЗ, имеющие реактивные двигатели для маневрирования, коррекции траектории или спуска с орбиты, снабжаются системами управления движением, составной частью которой является система ориентации.

Зарубежные искусственные спутники Земли. «ОСО-1».

Энергопитание бортовой аппаратуры большинства ИСЗ осуществляется от солнечных батарей, панели которых ориентируются перпендикулярно направлению солнечных лучей или расположены так, чтобы часть из них освещалась Солнцем при любом его положении относительно ИСЗ (так называемые всенаправленные солнечные батареи). Солнечные батареи обеспечивают длительную работу бортовой аппаратуры (до нескольких лет). На ИСЗ, рассчитанных на ограниченные сроки работы (до 2-3 недель), используются электрохимические источники тока - аккумуляторы, топливные элементы. Некоторые ИСЗ имеют на борту изотопные генераторы электрической энергии. Тепловой режим ИСЗ, необходимый для работы их бортовой аппаратуры, поддерживается системами терморегулирования.

В ИСЗ, отличающихся значительным тепловыделением аппаратуры, и космических кораблях применяются системы с жидкостным контуром теплопередачи; на ИСЗ с небольшим тепловыделением аппаратуры в ряде случаев ограничиваются пассивными средствами терморегулирования (выбор внешней поверхности с подходящим оптическим коэффициентом, теплоизоляции отдельных элементов).

Зарубежные искусственные спутники Земли. «Оскар-3».

Передача научной и другой информации с ИСЗ на Землю производится с помощью радиотелеметрических систем (часто имеющих запоминающие бортовые устройства для регистрации информации в периоды полёта ИСЗ вне зон радиовидимости наземных пунктов).

Пилотируемые корабли-спутники и некоторые автоматические ИСЗ имеют спускаемые аппараты для возвращения на Землю экипажа, отдельных приборов, плёнок, подопытных животных.

Движение ИСЗ.

Зарубежные искусственные спутники Земли. «Джемини».

ИСЗ выводятся на орбиты с помощью автоматических управляемых многоступенчатых ракет-носителей, которые от старта до некоторой расчётной точки в пространстве движутся благодаря тяге, развиваемой реактивными двигателями. Этот путь, называемый траекторией выведения ИСЗ на орбиту, или активным участком движения ракеты, составляет обычно от нескольких сотен до двух-трёх тыс. км . Ракета стартует, двигаясь вертикально вверх, и проходит сквозь наиболее плотные слои земной атмосферы на сравнительно малой скорости (что сокращает энергетические затраты на преодоление сопротивления атмосферы). При подъёме ракета постепенно разворачивается, и направление её движения становится близким к горизонтальному. На этом почти горизонтальном отрезке сила тяги ракеты расходуется не на преодоление тормозящего действия сил притяжения Земли и сопротивления атмосферы, а главным образом на увеличение скорости. После достижения ракетой в конце активного участка расчётной скорости (по величине и направлению) работа реактивных двигателей прекращается; это - так называемая точка выведения ИСЗ на орбиту. Запускаемый космический аппарат, который несёт последняя ступень ракеты, автоматически отделяется от неё и начинает своё движение по некоторой орбите относительно Земли, становясь искусственным небесным телом. Его движение подчинено пассивным силам (притяжение Земли, а также Луны, Солнца и др. планет, сопротивление земной атмосферы и т. д.) и активным (управляющим) силам, если на борту космического аппарата установлены специальные реактивные двигатели. Вид начальной орбиты ИСЗ относительно Земли зависит целиком от его положения и скорости в конце активного участка движения (в момент выхода ИСЗ на орбиту) и математически рассчитывается с помощью методов небесной механики. Если эта скорость равна или превышает (но не более чем в 1,4 раза) первую космическую скорость (около 8 км /сек у поверхности Земли), а её направление не отклоняется сильно от горизонтального, то космический аппарат выходит на орбиту спутника Земли. Точка выхода ИСЗ на орбиту в этом случае расположена вблизи перигея орбиты. Выход па орбиту возможен и в других точках орбиты, например вблизи апогея, но поскольку в этом случае орбита ИСЗ расположена ниже точки выведения, то сама точка выведения должна располагаться достаточно высоко, скорость же в конце активного участка при этом должна быть несколько меньше круговой.

В первом приближении орбита ИСЗ представляет собой эллипс с фокусом в центре Земли (в частном случае - окружность), сохраняющий неизменное положение в пространстве. Движение по такой орбите называется невозмущённым и соответствует предположениям, что Земля притягивает по закону Ньютона как шар со сферическим распределением плотности и что на спутник действует только сила притяжения Земли.

Такие факторы, как сопротивление земной атмосферы, сжатие Земли, давление солнечного излучения, притяжения Луны и Солнца, являются причиной отклонений от невозмущённого движения. Изучение этих отклонений позволяет получать новые данные о свойствах земной атмосферы, о гравитационном поле Земли. Из-за сопротивления атмосферы ИСЗ, движущиеся по орбитам с перигеем на высоте несколько сот км , постепенно снижаются и, попадая в сравнительно плотные слои атмосферы на высоте 120-130 км и ниже, разрушаются и сгорают; они имеют, таким образом, ограниченный срок существования. Так, например, первый советский ИСЗ находился в момент выхода на орбиту на высоте около 228 км над поверхностью Земли и имел почти горизонтальную скорость около 7,97 км /сек. Большая полуось его эллиптической орбиты (т. е. среднее расстояние от центра Земли) составляла около 6950 км , период обращения 96,17 мин , а наименее и наиболее удалённые точки орбиты (перигей и апогей) располагались на высотах около 228 и 947 км соответственно. Спутник существовал до 4 января 1958, когда он, вследствие возмущений его орбиты, вошёл в плотные слои атмосферы.

Орбита, на которую выводится ИСЗ сразу после участка разгона ракеты-носителя, бывает иногда лишь промежуточной. В этом случае на борту ИСЗ имеются реактивные двигатели, которые включаются в определённые моменты на короткое время по команде с Земли, сообщая ИСЗ дополнительную скорость. В результате ИСЗ переходит на другую орбиту. Автоматические межпланетные станции выводятся обычно сначала на орбиту спутника Земли, а затем переводятся непосредственно на траекторию полёта к Луне или планетам.

Наблюдения ИСЗ.

Зарубежные искусственные спутники Земли. «Транзит».

Контроль движения ИСЗ и вторичных орбитальных объектов осуществляется путём наблюдений их со специальных наземных станций. По результатам таких наблюдений уточняются элементы орбит спутников и вычисляются эфемериды для предстоящих наблюдений, в том числе и для решения различных научных и прикладных задач. По используемой аппаратуре наблюдения ИСЗ разделяются на оптические, радиотехнические, лазерные; по их конечной цели - на позиционные (определение направлений на ИСЗ) и дальномерные наблюдения, измерения угловой и пространственной скорости.

Наиболее простыми позиционными наблюдениями являются визуальные (оптические), выполняемые с помощью визуальных оптических инструментов и позволяющие определять небесные координаты ИСЗ с точностью до нескольких минут дуги. Для решения научных задач ведутся фотографические наблюдения с помощью спутниковых фотокамер , обеспечивающих точность определений до 1-2¢¢ по положению и 0,001 сек по времени. Оптические наблюдения возможны лишь в том случае, когда ИСЗ освещен солнечными лучами (исключение составляют геодезические спутники, оборудованные импульсными источниками света; они могут наблюдаться и находясь в земной тени), небо над станцией достаточно тёмное и погода благоприятствует наблюдениям. Эти условия значительно ограничивают возможность оптических наблюдений. Менее зависимы от таких условий радиотехнические методы наблюдений ИСЗ, являющиеся основными методами наблюдений спутников в период функционирования установленных на них специальных радиосистем. Такие наблюдения заключаются в приёме и анализе радиосигналов, которые либо генерируются бортовыми радиопередатчиками спутника, либо посылаются с Земли и ретранслируются спутником. Сравнение фаз сигналов, принимаемых на нескольких (минимально трёх) разнесённых антеннах, позволяет определить положение спутника на небесной сфере. Точность таких наблюдений около 3¢ по положению и около 0,001 сек по времени. Измерение доплеровского смещения частоты (см. Доплера эффект) радиосигналов даёт возможность определить относительную скорость ИСЗ, минимальное расстояние до него при наблюдавшемся прохождении и момент времени, когда спутник был на этом расстоянии; наблюдения, выполняемые одновременно из трёх пунктов, позволяют вычислить угловые скорости спутника.

Дальномерные наблюдения осуществляются путём измерения промежутка времени между посылкой радиосигнала с Земли и приёмом после ретрансляции его бортовым радиоответчиком ИСЗ. Наиболее точные измерения расстояний до ИСЗ обеспечивают лазерные дальномеры (точность до 1-2 м и выше). Для радиотехнических наблюдений пассивных космических объектов используются радиолокационные системы.

Научно-исследовательские ИСЗ.

Советские искусственные спутники Земли. Спутник серии «Космос» - ионосферная лаборатория.

Аппаратура, устанавливаемая на борту ИСЗ, а также наблюдения ИСЗ с наземных станций позволяют проводить разнообразные геофизические, астрономические, геодезические и др. исследования. Орбиты таких ИСЗ разнообразны - от почти круговых на высоте 200-300 км до вытянутых эллиптических с высотой апогея до 500 тыс. км . К научно-исследовательским ИСЗ относятся первые советские спутники, советские ИСЗ серий «Электрон» , «Протон» , «Космос» , американские спутники серий «Авангард», «Эксплорер», «ОГО», «ОСО», «ОАО» (орбитальные геофизические, солнечные, астрономические обсерватории); английский ИСЗ «Ариель», французский ИСЗ «Диадем» и др. Научно-исследовательские ИСЗ составляют около половины всех запущенных ИСЗ.

С помощью научных приборов, установленных на ИСЗ, изучаются нейтральный и ионный состав верхней атмосферы, её давление и температура, а также изменения этих параметров. Концентрация электронов в ионосфере и её вариации исследуются как с помощью бортовой аппаратуры, так и по наблюдениям прохождения сквозь ионосферу радиосигналов бортовых радиомаяков. С помощью ионозондов детально изучены структура верхней части ионосферы (выше главного максимума электронной концентрации) и изменения электронной концентрации в зависимости от геомагнитной широты, времени суток и т. п. Все результаты исследований атмосферы, полученные с помощью ИСЗ, являются важным и надёжным экспериментальным материалом для понимания механизмов атмосферных процессов и для решения таких практических вопросов, как прогноз радиосвязи, прогноз состояния верхней атмосферы и т. п.

С помощью ИСЗ обнаружены и исследуются радиационные пояса Земли . Наряду с космическими зондами ИСЗ позволили исследовать структуру магнитосферы Земли и характер её обтекания солнечным ветром, а также характеристики самого солнечного ветра (плотность потока и энергию частиц, величину и характер «вмороженного» магнитного поля) и др. недоступные для наземных наблюдений излучения Солнца - ультрафиолетовое и рентгеновское, что представляет большой интерес с точки зрения понимания солнечно-земных связей. Ценные для научных исследований данные доставляют также и некоторые прикладные ИСЗ. Так, результаты наблюдений, выполняемых на метеорологических ИСЗ, широко используются для различных геофизических исследований.

Результаты наблюдений ИСЗ дают возможность с высокой точностью определять возмущения орбит ИСЗ, изменения плотности верхней атмосферы (в связи с различными проявлениями солнечной активности), законы циркуляции атмосферы, структуру гравитационного поля Земли и др. Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи км друг от друга, изучать движение материков и т. п.

Прикладные ИСЗ.

Зарубежные искусственные спутники Земли. «Синком-3».

К прикладным ИСЗ относят спутники, запускаемые для решения тех или иных технических, хозяйственных, военных задач.

Спутники связи служат для обеспечения телевизионных передач, радиотелефонной, телеграфной и др. видов связи между наземными станциями, расположенными друг от друга на расстояниях до 10-15 тыс. км . Бортовая радиоаппаратура таких ИСЗ принимает сигналы наземных радиостанций, усиливает их и ретранслирует на другие наземные радиостанции. Спутники связи выводятся на высокие орбиты (до 40 тыс. км ). К ИСЗ этого типа относятся советский ИСЗ «Молния » , американский ИСЗ «Синком», ИСЗ «Интелсат» и др. Спутники связи, выведенные на стационарные орбиты, постоянно находятся над определёнными районами земной поверхности.

Советские искусственные спутники Земли. «Метеор».

Зарубежные искусственные спутники Земли. «Тирос».

Метеорологические спутники предназначены для регулярной передачи на наземные станции телевизионных изображений облачного, снегового и ледового покровов Земли, сведений о тепловом излучении земной поверхности и облаков и т. п. ИСЗ этого типа запускаются на орбиты, близкие к круговым, с высотой от 500-600 км до 1200-1500 км ; полоса обзора с них достигает 2-3 тыс. км . К метеорологическим спутникам относятся некоторые советские ИСЗ серии «Космос», спутники «Метеор» , американские ИСЗ «Тирос», «ЭССА», «Нимбус». Проводятся эксперименты по глобальным метеорологическим наблюдениям с высот, достигающих 40 тыс. км (советский ИСЗ «Молния-1», американский ИСЗ «АТС»).

Исключительно перспективными с точки зрения применения в народном хозяйстве являются спутники для исследования природных ресурсов Земли. Наряду с метеорологическими, океанографическими и гидрологическими наблюдениями такие ИСЗ позволяют получать оперативную информацию, необходимую для геологии, сельского хозяйства, рыбного промысла, лесного хозяйства, контроля загрязнений природной среды. Результаты, полученные с помощью ИСЗ и пилотируемых космических кораблей, с одной стороны, и контрольные измерения с баллонов и самолётов - с другой, показывают перспективность развития этого направления исследований.

Навигационные спутники, функционирование которых поддерживается специальной наземной системой обеспечения, служат для навигации морских кораблей, в том числе подводных. Корабль, принимая радиосигналы и определяя своё положение относительно ИСЗ, координаты которого на орбите в каждый момент известны с высокой точностью, устанавливает своё местоположение. Примером навигационных ИСЗ являются американские спутники «Транзит», «Навсат».

Советские искусственные спутники Земли. «Салют».

Пилотируемые корабли-спутники и обитаемые орбитальные станции являются наиболее сложными и совершенными ИСЗ. Они, как правило, рассчитаны на решение широкого круга задач, в первую очередь - на проведение комплексных научных исследований, отработку средств космической техники, изучение природных ресурсов Земли и др. Впервые запуск пилотируемого ИСЗ осуществлен 12 апреля 1961: на советском космическом корабле-спутнике «Восток» лётчик-космонавт Ю. А. Гагарин совершил полёт вокруг Земли по орбите с высотой апогея 327 км . 20 февраля 1962 вышел на орбиту первый американский космический корабль с космонавтом Дж. Гленном на борту. Новым шагом в исследовании космического пространства с помощью пилотируемых ИСЗ был полёт советской орбитальной станции «Салют» , Космические скорости , Космический летательный аппарат .

Литература:

  • Александров С. Г., Федоров Р. Е., Советские спутники и космические корабли, 2 изд., М., 1961;
  • Эльясберг П. Е., Введение в теорию полёта искусственных спутников Земли, М., 1965;
  • Руппе Г. О., Введение в астронавтику, пер. с англ., т. 1, М., 1970;
  • Левантовский В. И., Механика космического полёта в элементарном изложении, М., 1970;
  • Кинг-Хили Д., Теория орбит искусственных спутников в атмосфере, пер. с англ., М., 1966;
  • Рябов Ю. А., Движение небесных тел, М., 1962;
  • Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967. См. также лит. при ст. Космический летательный аппарат .

Н. П. Ерпылёв, М. Т. Крошкин, Ю. А. Рябов, Е. Ф. Рязанов.

Эта статья или раздел использует текст

Юдакова Дарья

В настоящее время всё большую актуальность приобретает развитие космической промышленности, так как искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду. Тысячи учёных, инженеров и техников уже сегодня ищут новые решения, закладывают основы космических аппаратов, которые через несколько лет придут на смену уже бороздящим вселенную.

Скачать:

Предварительный просмотр:

муниципальное бюджетное общеобразовательное учреждение

города Ростова-на-Дону

«Школа № 60 имени пятого гвардейского Донского казачьего кавалерийского Краснознаменного Будапештского корпуса»

(МБОУ «Школа № 60»)

__________________________________________________________________

РЕФЕРАТ

«Проекты отечественной космонавтики. Искусственные спутники Земли»

Выполнила:

ученица 4 «В» класса

Юдакова Дарья Учитель:

Храмцова Елена Анатольевна

г. Ростов-на-Дону

2016 год

Введение ………………………………………………………..……………..3

  1. Развитие космонавтики ……………………………………………………4
  1. Легенды и мифы о космосе……………………………………………….4
  2. Создание в СССР ракетной отрасли науки и промышленности……….4
  3. Шаг к звёздам. Первый искусственный спутник Земли………………5
  4. Глобальная навигационная спутниковая система……………………5-7
  5. Решения на основе технологий ГЛОНАСС………………………….7-8
  6. Крупнейшие проекты современной отечественной космонавтики…8-9
  1. Изготовление макета искусственного спутника Земли…………………9

Заключение………………………………………………………………10-11

Список литературы………………………………………………………….11

Приложение………………………………………………………………12-13

Введение

«Первый великий шаг человечества состоит в том, чтобы вылететь за атмосферу и сделаться спутником Земли. Остальное сравнительно легко, вплоть до удаления от нашей Солнечной системы».

К. Д. Циолковский

Быть может, уже много тысяч лет назад, глядя на ночное небо, человек мечтал о полёте к звездам. Мириады мерцающих ночных светил заставляли его уноситься мыслью в безбрежные дали Вселенной, будили воображение, заставляли задумываться над тайнами мироздания. Шли века, человек приобретал всё большую власть над природой, но мечта о полёте к звездам оставалась всё такой же несбыточной, как тысячи лет назад.

Великая честь открыть людям дорогу к другим мирам выпала на долю нашего соотечественника К. Э. Циолковского. Идеи Циолковского получили всеобщее признание ещё в 1920-е годы.

В 2016 г. мы отмечаем 70-летний юбилей отечественной космической промышленности - 13 мая 1946 г. Сталин И. В. подписал постановление о создании в СССР ракетной отрасли науки и промышленности.

В настоящее время всё большую актуальность приобретает развитие космической промышленности, так как искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду. Тысячи учёных, инженеров и техников уже сегодня ищут новые решения, закладывают основы космических аппаратов, которые через несколько лет придут на смену уже бороздящим вселенную.

Цель проекта: определить, что такое искусственные спутники Земли, изучить область их использования.

Задачи: изучить материал по данному вопросу, изготовить макет первого искусственного спутника.

  1. Развитие космонавтики

1.1 Легенды и мифы о космосе

Легенды и мифы всех народов полны рассказов о полете к Луне, Солнцу и звёздам. Средства для таких полётов, предлагавшиеся народной фантазией, были примитивны: колесница, влекомая орлами, крылья, прикрепленные к рукам человека.

В 17 веке появился фантастический рассказ французского писателя Сирано де Бержерака о полете на Луну. Герои этого рассказа добрался до Луны в железной полоске, над которой он все время подбрасывал сильный магнит. Притягиваясь к нему, полоска все выше поднималась над Землей, пока не достигла Луны. «Из пушки на Луну» отправились герои Жюля Верна. Известный английский писатель Герберт Уэльс описал фантастическое путешествие на Луну в снаряде, корпус которого был сделан из материала, не подверженного силе тяготения.

Предлагались разные средства для осуществления космического полета. Писатели фантасты упоминали и ракеты. Однако эти ракеты были технически необоснованной мечтой. Учёные за многие века не назвали единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть могучую силу земного притяжения и унестись в межпланетное пространство.

1.2 Создание в СССР ракетной отрасли науки и промышленности

13 мая 1946 г . Сталин подписал постановление о создании в СССР ракетной отрасли науки и промышленности. В августе С. П. Королёв был назначен главным конструктором баллистических ракет дальнего действия.

Но еще в 1931 году в СССР была создана Группа изучения реактивного движения, которая занималась конструированием ракет. В этой группе работали Цандер, Тихонравов, Победоносцев, Королёв . В 1933 году на базе этой группы был организован Реактивный институт, который продолжил работы по созданию и совершенствованию ракет.

Цели запуска: проверка расчётов и основных технических решений, принятых для запуска; ионосферные исследования прохождения радиоволн, излучаемых передатчиками спутника; экспериментальное определение плотности верхних слоёв атмосферы по торможению спутника;

исследование условий работы аппаратуры.

Несмотря на то, что на спутнике полностью отсутствовала какая-либо научная аппаратура, изучение характера радиосигнала и оптические наблюдения за орбитой позволили получить важные научные данные.

1.3 Первый искусственный спутник Земли

Для реализации такой сложной задачи, как запуск искусственного спутника Земли, требовалось объединение огромных научных сил и технических средств. Этот первый шаг в космос был очень труден.

Не случайно еще К. Э. Циолковский говорил, что в освоении космического пространства «Первый великий шаг человечества состоит в том, чтобы вылететь за атмосферу и сделаться спутником Земли. Остальное сравнительно легко, вплоть до удаления от нашей Солнечной системы».

Спутник-1 - первый искусственный спутник Земли, первый космический аппарат, запущен на орбиту в СССР 4 октября 1957 года.

Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (позже это место получило название космодром Байконур) на ракете-носителе «Спутник» (Р-7).

Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко и многие другие.

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава со стыковочными шпангоутами, соединёнными между собой 36 болтами. Герметичность стыка обеспечивала резиновая прокладка. В верхней полуоболочке располагались две антенны, каждая из двух штырей по 2,4 м и по 2,9 м. Так как спутник был неориентирован, то четырёхантенная система давала равномерное излучение во все стороны.

Внутри герметичного корпуса были размещены блок электрохимических источников; радиопередающее устройство; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса первого спутника: 83,6 кг.

Дата запуска первого искусственного спутника Земли считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

  1. Глобальная навигационная спутниковая система

ГЛО бальная НА вигационная С путниковая С истема (ГЛОНАСС) - советская и российская спутниковая система, которую начали разрабатывать в 1976 году. Официально принята в эксплуатацию в 1993 году. Всего с 1982 по 1998 год на орбиту было выведено 74 космических аппарата, по ценам 1997 года на развёртывание было потрачено 2,5 млрд долларов. К 1995 году группировка была развёрнута практически до штатного состава - до 24 спутников.

Однако дальше из-за слабого финансирования и малого срока службы спутников их число начало стремительно сокращаться. К 2001 году осталось только 6 действующих космических аппаратов. В августе 2001 года была принята федеральная целевая программа «Глобальная навигационная система», согласно которой покрытие России должно быть обеспечено к 2008 году, а глобальное покрытие в 2010 году. Эта программа с небольшими поправками была реализована. 2 сентября 2010 года группировка ГЛОНАСС составляла 26 спутников.

ФЦП «Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 годы» предусматривает изготовление 13 «Глонасс-М» со сроком службы 7 лет и 22 «Глонасс-К» со сроком службы 10 лет.

Кроме Российской ГЛОНАСС сейчас действует только одна глобальная навигационная система: американская GPS. Для своего функционирования, как и российской ГЛОНАСС, ей требуется 24 работающих спутника.

На планете неспешно развёртывается ещё несколько спутниковых навигационных систем:

Китайская система «Бэйдоу», уже насчитывает 16 спутников из примерно 30-35. Уже функционирует как региональная навигационная система, к 2020 году планируется стать глобальной;

Европейская система «Галилео», спутники которой выводятся с помощью ракет «Союз-СТБ» с космодрома в Куру. Первые виды услуг должны быть предоставлены в 2014 году;

Индийская IRNSS, из 7 спутников, будет обеспечивать покрытие только самой Индии и сопредельных территорий. Окончание завершения работ - 2015 год.

Особняком стоят системы дифференциальной коррекции, которые позволяют заметно увеличить точность позиционирования. Такие системы могут включать как наземные пункты измерения, так и ретрансляторы сигналов на спутниках (обычно на геостационарных и геосинхронных орбитах). Для ГЛОНАСС роль такой системы выполняет Российская система дифференциальной коррекции и мониторинга (СДКМ) .

Первые российские смартфоны с поддержкой ГЛОНАСС вызывали град вполне обоснованной критики из-за высокой цены и скромных технических характеристик. Скептики высказывали мнение, что для ГЛОНАСС путь на потребительский рынок закрыт. Тем не менее, сегодня российская спутниковая система используется ведущими мировыми брендами: Apple, BlackBerry, HP, HTC, Nokia, Samsung, Sharp, Sony Ericsson и другими.

Поддержка ГЛОНАСС часто никак не отображается в интерфейсе мобильных устройств, чипсет автоматически выбирает наиболее подходящие спутники. Например, отечественный чип ML8088s позволяет определять местоположение по спутникам GPS, ГЛОНАСС и GALILEO.

1.5 Решения на основе технологий ГЛОНАСС

Решения на основе технологий ГЛОНАСС активно внедряются в нашу жизнь. Современные системы мониторинга и управления транспортом позволяют снижать затраты на перевозку людей и грузов, экономить топливо, оптимизировать логистику, уменьшать выбросы в атмосферу- всё вместе это даёт значительный экономический эффект.

Кроме того, космические системы обеспечивают безопасность граждан. Ежегодно на российских дорогах погибают более 30 тысяч человек в основном трудоспособного возраста. Применение технологий спутниковой навигации позволяет оптимизировать алгоритмы управления дорожным движением, работу бригад "Скорой помощи", спасателей, нарядов ДПС, страховых компаний.

Решения на основе технологий ГЛОНАСС активно внедряются правоохранительными органами. Это позволяет эффективно использовать имеющиеся в распоряжении стажей правопорядка силы и средства. В итоге применение спутниковой навигации в Министерстве внутренних дел позволило повысить раскрываемость "по горячим следам", в том числе таких тяжких преступлений, как разбои, грабежи.

Планируется использование ГЛОНАСС/GPS-технологий в мобильных телефонах, смартфонах с теми же функциями-сигнал в службу спасения вместе с информацией о позиционировании. Кроме этого, в разработке находится проект "Социальный ГЛОНАСС" для людей с ограниченными возможностями, например с ослабленным зрением - им система может помочь ориентироваться на улицах, а также больным, детям.

Без использования современных навигационных технологий трудно будет обеспечить конкурентоспособность национальной экономики. Глобальная навигационная система как нельзя лучше подходит на роль локомотива инновационного развития отечественной экономики. Её возможности востребованы практически во всех отраслях - от энергетики и связи до строительства, сельского хозяйства, транспорта.

Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи км друг от друга, изучать движение материков и т. п.

В 1968 г. в нашей стране создана метеорологическая система «Метеор». В нее входит несколько спутников, находящихся одновременно в полете на разных орбитах. На борту каждого - две телевизионные камеры. Они ведут наблюдения за облачным покровом планеты. На ночной стороне Земли съёмка проводится с помощью инфракрасных лучей, позволяющих фиксировать контуры материков, морей , облачных образований. Подобные сведения постоянно передаются в Гидрометеоцентр. По ним составляются сводки и прогнозы погоды.

Метеорологические спутники дают картину распределения облаков над всей планетой, даже над теми территориями, где нет наземных метеорологических станций. А ведь динамика атмосферы во многом связана с такими безлюдными районами, как Арктика и Антарктика , труднодоступными высокогорьями и океаническими просторами. И еще одно достоинство спутников: они ведут наблюдения постоянно, следят за перемещением ураганов, помогая заблаговременно предупреждать жителей о грозящей опасности.

Метеорологические спутники предоставляют ценный материал для земледельцев, летчиков, моряков, рыбаков - всех тех, кого интересует прогноз погоды; они приносят ощутимую пользу народному хозяйству.

Итак, искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду.

1.6 Крупнейшие проекты современной отечественной космонавтики

Уже реализованы полностью или практически полностью:

  • Космический радиотелескоп «Радиоастрон», крупнейший в мире телескоп с разрешением в 1000 раз больше, чем у «Хаббла»;
  • ГЛОНАСС, одна из двух действующих в мире глобальных систем спутникового геопозиционирования;
  • Международная космическая станция, крупный проект, главные роли в котором играют Россия и США;
  • Морской старт, единственный в мире плавучий космодром;
  • В Южной Корее создается РН KSLV-1 совместно с ГКНПЦ имени М. В. Хруничева - фактически проведены летные испытания модуля первой ступени РН «Ангара» - УРМ-1;
  • Стартовый комплекс «Союз» на космодроме в Куру;
  • Конверсионная ракета-носитель «Рокот» со стартовым комплексом, переделанным из-под РН «Космос» на космодроме «Плесецк» и разгонным блоком «Бриз-КМ»;
  • «Протон-М» - глубокая модернизация ракеты «Протон-К», с разработкой под нее разгонного блока «Бриз-М».

В процессе реализации находятся следующие проекты:

  • «Союз-2» - глубокая поэтапная модернизация ракеты-носителя «Союз». В значительной степени уже выполнена, в ближайшее время в рамках проекта должен войти в строй носитель лёгкого класса «Союз-2 этапа 1в», представляющий собой, по сути, ракету «Союз» без боковых блоков;
  • Семейство модульных ракет-носителей «Ангара»;
  • Перспективная пилотируемая транспортная система;
  • Космодром Восточный;
  • Транспортная космическая система с ядерной силовой установкой;
  • Проект по исследованию Марса «ЭкзоМарс» (совместно с Европейским космическим агентством);
  • Космический телескоп «Спектр-РГ» (диапазона рентгеновских и гамма-лучей).

В ближней перспективе ожидается начало работ по следующим проектам, предусмотренным документами Роскосмоса:

  • Создание космического ракетного комплекса с ракетой-носителем сверхтяжелого класса грузоподъемностью более 50 тонн;
  • Создание космического ракетного комплекса с ракетой-носителем с многоразовой первой ступенью.
  1. Изготовление макета искусственного спутника Земли

Для изготовления макета искусственного спутника Земли потребуется две металлические полусферы, которые я соединила межу собой с помощью пластина и заклёпок. Затем, произвожу разметку для крепления антенн на корпусе по металлическим прямоугольным бобышкам, имеющим сквозные отверстия, и высверливаю их. Приобретённые заранее телевизионные антенны расплющиваю у основания и просверливаю в них аналогичные отверстия. Соединяю корпус спутника с антеннами также при помощи заклёпок.

Заключение

Космонавтика нужна науке - она грандиозней и могучий инструмент изучения Вселенной, Земли, самого человека.

С каждым днём всё более расширяется сфера прикладного использования космонавтики. Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты, самая передовая технология - это уже и сегодняшний день, и очень близкий завтрашний день космонавтики. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне. И многое-многое другое.

Много изменений произошло в нашей стране. Распался Советский Союз, образовалось Содружество Независимых Государств. В одночасье оказалась неопределенной и судьба советской космонавтики. Но надо верить в торжество здравого смысла. Наша страна была пионером в области исследования космоса. Космическая отрасль долгое время была у нас символом прогресса предметом законной гордости нашей страны.

Космонавтика была частью политики - наши космические достижения должны были "еще раз продемонстрировать преимущество социалистического строя". Поэтому в официальных отчетах и монографиях с большой помпой описывались наши достижения и скромно умалчивалось о неудачах, а главное об успехах наших главных оппонентов - американцев.

Сейчас появились, наконец, публикации правдиво, без лишней помпезности и с изрядной долей самокритики рассказывающие о том как проходило у нас исследование межпланетного пространства и мы видим, что не все шло легко и гладко. Это ничуть не умаляет достижений нашей космической отрасли – напротив, свидетельствует о твердости и духе людей, несмотря на неудачи шедших к цели. Наши достижения в космосе не будут преданы забвению и получат дальнейшее развитие в новых идеях. Космонавтика жизненно необходима всему человечеству!

Это громадный катализатор современной техники, ставший за невиданно короткий срок одним из главный рычагов современного мирового процесса. Она стимулирует развитие электроники, машиностроения, материаловедения, вычислительной техники, энергетики и многих других областей народного хозяйства.

Исследования, проводимые на спутниках и орбитальных комплексах, исследования других планет позволяют расширить наши представления о Вселенной, о Солнечной системе, о нашей собственной планете, понять наше место в этом мире. Поэтому необходимо продолжать не только освоение Космоса для наших чисто практических нужд, но и фундаментальные исследования на космических обсерваториях, и исследования планет нашей Солнечной системы.

Источники информации

ДЕСЯТЬ ПРИЧИН ИССЛЕДОВАТЬ КОСМОС

1. Развитие технологий. Сотни технологических разработок уже перекочевали из космоса на Землю и стали частью повседневной жизни миллионов людей.

2. Научные открытия, совершаемые с помощью космических исследований, позволяют пополнить наши знания о природе Вселенной и продвигают фундаментальные области науки.

3. Космос может помочь решить энергетические проблемы человечества. На данный момент наиболее перспективным вариантом является добыча изотопа гелия-3 на Луне.

4. Космическая индустрия дает работу сотням тысяч людей во многих странах. Ежегодный оборот мировой космической индустрии составляет $170 млрд.

5. Прямым развитием космической программы является космический туризм, с годами он станет крупной отраслью, обеспечивая работой многих людей и принося большие прибыли.

6. Космос неразрывно связан с военными технологиями, в перспективе возможно создание космических видов оружия, которые будут многократно превосходить существующие ныне.

Например, кинетическое оружие. Запущенный с орбиты небольшой астероид будет во много раз страшнее любой атомной бомбы.

7. Только располагая мощными космическими технологиями, можно обеспечить защиту планеты от астероидов, подобных тем, которые уничтожили динозавров 70 млн. лет назад.

8. Создание баз на Луне и Марсе станет подготовкой резервных убежищ для человечества на случай катаклизмов на Земле. Эти колонии также спасут планету от практически неизбежного перенаселения.

9. Космос имеет огромное политическое значение, успехи во внеземном пространстве поднимают престиж страны.

10. Космос является глобальной целью, вокруг которой со временем может объединиться все человечество, навсегда позабыв о внутренних межнациональных и религиозных распрях.

Муниципальное общеобразовательное учреждение

Сатинская средняя общеобразовательная школа

Реферат

Искусственные

Спутники

Земли

Работу выполнила Сатинской средней школы

Сампурского района

Илясова Екатерина

Искусственные спутники.

Вселенная – это весь окружающий нас бесконечный и вечный мир. Часто вместо слова «вселенная» употребляют равнозначное ему слово «космос». Правда, иногда из понятия «космос», исключают Землю с её атмосферой.

Когда я была маленькой, то часто любовалась звёздным небом. Мне казалось, что за этими горящими лампочками скрывается целый мир со своими жителями и законами. Но в школе я узнала,что мои представления о космосе не соответствуют действительности, и вскоре мечты о знакомстве с жителями того мира быстро рассеялись.

Однако, этот мир оказался не менее интересным и загадочным, чем я его представляла. Теперь я знаю, что некоторые из звёзд, гуляющие по небу, за которыми я наблюдала, - это блестящие тела разных размеров и форм с антеннами снаружи и радиопередатчиками внутри – искусственные спутники Земли – космические летательные аппараты, выведенные на околоземные орбиты и предназначенные для решения научных и прикладных задач.
Человечество всегда стремилось к звёздам, они манили к себе, как магнит и ни что не могло удержать человека на Земле. Смотря трансляцию футбольного матча по телевизору, у меня часто появляется вопрос: как человеку удаётся передавать события, происходящие за пределами нашего материка. В Югославии идёт война. Натовские войска способны поражать цели на огромном расстоянии. Как же им это удаётся? Какую технику они используют? Когда я смотрю фантастику, то задумываюсь о том, сможет ли человек осуществить свои фантазии: летать с огромными скоростями на манёвренных космических объектах, встретиться с внеземными цивилизациями. Думая о своём будущем, мне бы хотелось, чтобы наше государство не прекращало тенденции к развитию космической деятельности, чтобы наша страна не сдавала лидирующей позиции в области космических научных исследований. Ведь мы первыми смогли запустить искусственный спутник Земли, первым полетел в космос гражданин нашей страны, мы единственные смогли установить космическую станцию на околоземной орбите.
Целью своей работы я поставила – ознакомиться с физическими основами полёта космических объектов. Только после этого можно найти ответы на поставленные мной вопросы. Из моего реферата вы узнаете о движении искусственных спутников Земли, их оборудовании, предназначении, классификации, истории и др.

Оборудование ИСЗ.

ИСЗ выводятся на орбиты с помощью ступенчатых ракет – носителей, которые поднимают их на определённую высоту над поверхностью Земли и разгоняют до скорости, равной или превышающей (но не более чем в 1,4 раза) первую космическую скорость. Запуски ИСЗ с помощью собственных ракет – носителей производят Россия, США, Франция, Япония, КНР И Великобритания. Ряд ИСЗ выводятся на орбиты в рамках международного сотрудничества. Таковы, например, спутники «Интеркосмос».

Искусственными спутниками, по существу, являются все летательные космические аппараты, выведенные на орбиты вокруг Земли, включая космические корабли и орбитальные станции с экипажами. Однако к ИСЗ принято относить главным образом автоматические спутники, не предназначенные для работы на них человека – космонавта. Это вызвано тем, что пилотируемые космические корабли существенно отличаются по своим конструктивным особенностям от автоматических спутников. Так, космические корабли должны иметь системы жизнеобеспечения, специальные отсеки – спускаемые аппараты, в которых космонавты возвращаются на Землю. Для автоматических ИСЗ такого рода оборудование не обязательно или вовсе излишне.

Размеры, масса, оборудование ИСЗ зависят от задач, которые спутники решают. Первый в мире советский ИСЗ имел массу 83,6 кг, корпус в виде шара диаметром 0,58 м. масса наименьшего ИСЗ составляла 700 г.

Размеры корпуса ИСЗ ограничиваются размерами головного обтекателя ракеты – носителя, защищающего спутник от неблагоприятного воздействия атмосферы на участке выведения ИСЗ на орбиту. Поэтому диаметр цилиндрического корпуса ИСЗ не превышает 3 – 4 м. на орбите размеры ИСЗ могут значительно увеличиться за счёт развертываемых элементов спутника – панелей солнечных батарей, штанг с приборами, антенн.

Оборудование ИСЗ очень разнообразно. Это, во – первых, аппаратура, с помощью которой обеспечивается выполнение поставленных перед спутником задач, - научно – исследовательская, навигационная, метеорологическая и др. во – вторых, так называемое служебное оборудование, призванное обеспечить необходимые условия для работы основной аппаратуры и связь между ИСЗ и Землей. К служебному оборудованию относятся системы энергопитания, система терморегулирования для создания и поддержки необходимого теплового режима работы аппаратуры и др. служебные системы обязательны для подавляющего большинства ИСЗ. Кроме того, как правило, ИСЗ снабжается системой ориентации в пространстве, тип которой зависит от назначения спутника(ориентация по небесным телам, по магнитному полю Земли и т. п.), и бортовой электронной вычислительной машиной для управления работой приборов и служебных систем.

Энергопитание бортовой аппаратуры большинства ИСЗ осуществляется от солнечных батарей, панели которых ориентируются перпендикулярно направлению солнечных лучей или расположены так, чтобы часть из них освещалась Солнцем при любом его положении относительно ИСЗ (так называемые всенаправленные солнечные батареи). Солнечные батареи обеспечивают длительную работу бортовой аппаратуры (до нескольких лет). На ИСЗ, рассчитанных на ограниченные сроки работы (до 2-3 недель), используются электрохимические источники тока – аккумуляторы, топливные элементы.

Передача научной и другой информации с ИСЗ на Землю производится с помощью радиотелеметрических систем (часто имеющих запоминающие бортовые устройства для регистрации информации в периоды полёта ИСЗ вне зон радиовидимости наземных пунктов).

Три космические скорости.

В первое время после запуска искусственного спутника Земли часто можно было слышать вопрос: "Почему спутник после выключения двигателей продолжает обращаться вокруг Земли, не падая на Землю?". Так ли это? В действительности спутник "падает" – он притягивается к Земле под действием силы тяжести. Если бы не было притяжения, то спутник улетел бы по инерции от Земли в направлении приобретённой им скорости. Земной наблюдатель воспринял бы такое движение спутника как движение вверх. Как известно из курса физики, для движения по кругу радиуса R тело должно обладать центростремительным ускорением a=V2/R, где а – ускорение, V – скорость. Поскольку в данном случае роль центростремительного ускорения играет ускорение силы тяжести, то можно написать: g=V2/R. Отсюда нетрудно определить скорость Vкр, необходимую для кругового движения на расстоянии R от центра Земли: Vкр2=gR. В приближённых расчётах принимается, что ускорение силы тяжести постоянно и равно 9,81 м/сек2. Эта формула справедлива и в более общем случае, только ускорение силы тяжести следует считать переменной величиной. Таким образом, мы нашли скорость кругового движения. Какова же та начальная скорость, которую нужно сообщить телу, чтобы оно двигалось вокруг Земли по окружности? Нам уже известно, что чем большую скорость сообщить телу, тем на большее расстояние оно улетит. Траектории полёта будут эллипсами (мы пренебрегаем влиянием сопротивления земной атмосферы и рассматриваем полёт тела в пустоте). При некоторой достаточно большой скорости тело не успеет упасть на Землю и, сделав полный оборот вокруг Земли, возвратится в начальную точку, чтобы вновь начать движение по окружности. Скорость спутника, движущегося по круговой орбите вблизи земной поверхности, называется круговой или первой космической скоростью и представляет собой ту скорость, которую нужно сообщить телу, чтобы оно стало спутником Земли. Первая космическая скорость у поверхности Земли может быть вычислена по приведенной выше формуле для скорости кругового движения, если подставить вместо R величину радиуса Земли (6400 км), а вместо g – ускорение свободного падения тела, равное 9,81 м/сек. В результате найдём, что первая космическая скорость равна Vкр=7,9 км/сек.

Познакомимся теперь со второй космической или параболической скоростью, под которой понимают скорость, необходимую для того, чтобы тело преодолело земное тяготение. Если тело достигнет второй космической скорости, то оно может удалиться от Земли на любое сколь угодно большое расстояние (предполагается, что на тело не будут действовать никакие другие силы, кроме сил земного тяготения).

Проще всего для получения величины второй космической скорости воспользоваться законом сохранения энергии. Совершенно очевидно, что после выключения двигателей сумма кинетической и потенциальной энергии ракеты должна оставаться постоянной. Пусть в момент выключения двигателей ракета находилась на расстоянии R от центра Земли и имела начальную скорость V (для простоты рассмотрим вертикальный полёт ракеты). Тогда по мере удаления ракеты от Земли скорость её будет уменьшаться. На некотором расстоянии rmax ракета остановится, так как её скорость обратится в ноль, и начнёт свободно падать на Землю. Если в начальный момент ракета обладала наибольшей кинетической энергией mV2/2, а потенциальная энергия была равна нулю, то в наивысшей точке, где скорость равна нулю, кинетическая энергия обращается в ноль, переходя целиком в потенциальную. Согласно закону сохранения энергии, находим:

mV2/2=fmM(1/R-1/rmax) или V2=2fM(1/R-1/rmax).